Manuel Garcia-Perez

List of Publications by Citations

Source: https://exaly.com/author-pdf/6886599/manuel-garcia-perez-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

141 papers

6,435 citations

49 h-index

// g-index

146 ext. papers

7,596 ext. citations

5.9 avg, IF

6.24 L-index

#	Paper	IF	Citations
141	Fast Pyrolysis of Oil Mallee Woody Biomass: Effect of Temperature on the Yield and Quality of Pyrolysis Products. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1846-1854	3.9	278
140	Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. <i>Biomass and Bioenergy</i> , 2016 , 84, 37-48	5.3	258
139	Effects of particle size on the fast pyrolysis of oil mallee woody biomass. <i>Fuel</i> , 2009 , 88, 1810-1817	7.1	254
138	Mallee wood fast pyrolysis: Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. <i>Fuel</i> , 2011 , 90, 2915-2922	7.1	242
137	Effects of Temperature on the Formation of Lignin-Derived Oligomers during the Fast Pyrolysis of Mallee Woody Biomass. <i>Energy & Double Biomass. Energy & Double Biomass. E</i>	4.1	190
136	Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. <i>Carbon</i> , 2016 , 100, 678-692	10.4	182
135	Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. <i>Bioresource Technology</i> , 2010 , 101, 9688-99	11	169
134	Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations. <i>Carbon</i> , 2016 , 110, 155-171	10.4	168
133	Effect of cellulose crystallinity on the formation of a liquid intermediate and on product distribution during pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 100, 56-66	6	150
132	Historical Developments of Pyrolysis Reactors: A Review. <i>Energy & Developments</i> , 2017, 31, 5751-5775	4.1	146
131	Fractional Condensation of Biomass Pyrolysis Vapors. <i>Energy & Energy & Ene</i>	4.1	135
130	Challenges and Opportunities for Bio-oil Refining: A Review. <i>Energy & Challenges amp; Fuels</i> , 2019 , 33, 4683-4720	4.1	132
129	The role of biochar porosity and surface functionality in augmenting hydrologic properties of a sandy soil. <i>Science of the Total Environment</i> , 2017 , 574, 139-147	10.2	127
128	Deconvoluting the XPS spectra for nitrogen-doped chars: An analysis from first principles. <i>Carbon</i> , 2020 , 162, 528-544	10.4	95
127	DSC studies to evaluate the impact of bio-oil on cold flow properties and oxidation stability of bio-diesel. <i>Bioresource Technology</i> , 2010 , 101, 6219-24	11	95
126	Hydrotreatment of pyrolysis bio-oil: A review. Fuel Processing Technology, 2019, 195, 106140	7.2	93
125	Recent developments in fast pyrolysis of ligno-cellulosic materials. <i>Current Opinion in Biotechnology</i> , 2013 , 24, 414-20	11.4	93

124	Yeast fermentation of carboxylic acids obtained from pyrolytic aqueous phases for lipid production. <i>Bioresource Technology</i> , 2012 , 118, 177-86	11	93
123	Production and fuel properties of fast pyrolysis oil/bio-diesel blends. <i>Fuel Processing Technology</i> , 2010 , 91, 296-305	7.2	92
122	Production and Fuel Properties of Pine Chip Bio-oil/Biodiesel Blends. <i>Energy & Description of Pine Chip Bio-oil</i> (1988) 2007, 21, 236	3 ₄ 2 - 872	2 91
121	Fermentation of levoglucosan with oleaginous yeasts for lipid production. <i>Bioresource Technology</i> , 2013 , 133, 183-9	11	88
120	Pyrolysis Oil Multiphase Behavior and Phase Stability: A Review. <i>Energy & Energy & </i>	04.1	86
119	Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 93, 52-62	6	86
118	Economic tradeoff between biochar and bio-oil production via pyrolysis. <i>Biomass and Bioenergy</i> , 2011 , 35, 1851-1862	5.3	86
117	Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark. Characterization of Water-Soluble and Water-Insoluble Fractions. <i>Energy & Energy & E</i>	4.1	84
116	Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass. <i>Fuel</i> , 2011 , 90, 2530-2537	7.1	83
115	Colloidal Properties of Bio-Oils Obtained by Vacuum Pyrolysis of Softwood Bark. Storage Stability. <i>Energy & Dispersion of Stability</i> . <i>Energy & Dispersion of Stability</i> .	4.1	79
114	Evolution of palm oil mills into bio-refineries: Literature review on current and potential uses of residual biomass and effluents. <i>Resources, Conservation and Recycling</i> , 2016 , 110, 99-114	11.9	79
113	Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. <i>Energy Conversion and Management</i> , 2015 , 105, 1389-1396	10.6	74
112	Modification of biochar surface by air oxidation: Role of pyrolysis temperature. <i>Biomass and Bioenergy</i> , 2016 , 85, 1-11	5.3	74
111	Hydrothermal catalytic deoxygenation of palmitic acid over nickel catalyst. <i>Fuel</i> , 2016 , 166, 302-308	7.1	73
110	Cellulose-Lignin interactions during slow and fast pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 114, 197-207	6	71
109	Controlling the Phase Stability of Biomass Fast Pyrolysis Bio-oils. <i>Energy & Company Fuels</i> , 2015 , 29, 4373-43	841.1	71
108	Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. <i>Fuel</i> , 2013 , 103, 672-682	7.1	70
107	Quantification of Bio-Oil Functional Groups and Evidences of the Presence of Pyrolytic Humins. <i>Energy & Energy & Energy</i>	4.1	70

106	Stepwise Fast Pyrolysis of Pine Wood. Energy & Stepwise Fast Pyrolysis of	4.1	66
105	Effect of the Fast Pyrolysis Temperature on the Primary and Secondary Products of Lignin. <i>Energy & Emp; Fuels</i> , 2013 , 27, 5867-5877	4.1	65
104	Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir. <i>Fuel</i> , 2013 , 104, 536-546	7.1	65
103	Effect of temperature during wood torrefaction on the formation of lignin liquid intermediates. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 109, 222-233	6	62
102	Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 114, 127-137	6	60
101	Slow and fast pyrolysis of Douglas-fir lignin: Importance of liquid-intermediate formation on the distribution of products. <i>Biomass and Bioenergy</i> , 2014 , 66, 398-409	5.3	60
100	Colloidal Properties of Bio-oils Obtained by Vacuum Pyrolysis of Softwood Bark: Aging and Thermal Stability. <i>Energy & Double Stability</i> .	4.1	60
99	Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. <i>Energy & amp; Fuels</i> , 2017 , 31, 1650-1664	4.1	56
98	Secondary Vapor Phase Reactions of Lignin-Derived Oligomers Obtained by Fast Pyrolysis of Pine Wood. <i>Energy & Double Burney</i> ; Fuels, 2013 , 27, 1428-1438	4.1	54
97	Progress in understanding the four dominant intra-particle phenomena of lignocellulose pyrolysis: chemical reactions, heat transfer, mass transfer, and phase change. <i>Green Chemistry</i> , 2019 , 21, 2868-28	898 ^O	51
96	Production and characterization of bio-oil and biochar from the pyrolysis of residual bacterial biomass from a polyhydroxyalkanoate production process. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 115, 268-278	6	50
95	Chemical and morphological evaluation of chars produced from primary biomass constituents: Cellulose, xylan, and lignin. <i>Biomass and Bioenergy</i> , 2017 , 104, 17-35	5.3	49
94	Effect of Cellulose Crystallinity on Solid/Liquid Phase Reactions Responsible for the Formation of Carbonaceous Residues during Pyrolysis. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 29	40-295	55 ⁴⁹
93	Corrosion of Metals by Bio-Oil Obtained by Vacuum Pyrolysis of Softwood Bark Residues. An X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Study. <i>Energy & amp; Fuels</i> , 2004 , 18, 12	94 1 30	1 ⁴⁹
92	Evaluation of alternatives for the evolution of palm oil mills into biorefineries. <i>Biomass and Bioenergy</i> , 2016 , 95, 310-329	5.3	49
91	Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 117-130	6	45
90	The Alcohol-to-Jet Conversion Pathway for Drop-In Biofuels: Techno-Economic Evaluation. <i>ChemSusChem</i> , 2018 , 11, 3728-3741	8.3	45
89	Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 109, 140-151	6	44

Fast pyrolysis of biomass: A review of relevant aspects. Part I: Parametric study. <i>DYNA (Colombia)</i> , 2015 , 82, 239-248	0.6	42
Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawaifland Tropical Regions. <i>Energy & Description</i> 2019, 33, 2699-2762	4.1	41
Thermochemical conversion of sugarcane bagasse by fast pyrolysis: High yield of levoglucosan production. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 133, 246-253	6	38
Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. <i>Fuel</i> , 2013 , 103, 512-523	7.1	38
Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 123, 347-363	6	36
Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. <i>Bioresource Technology</i> , 2017 , 223, 74-83	11	36
Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 122, 106-121	6	35
Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al2O3 catalyst. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 118, 136-143	6	35
Pyrolysis Gas Chromatography Mass Spectrometry Studies to Evaluate High-Temperature Aqueous Pretreatment as a Way to Modify the Composition of Bio-Oil from Fast Pyrolysis of Wheat Straw. <i>Energy & Energy & Ener</i>	4.1	35
Chemical Composition and Fuel Properties of Alternative Jet Fuels. <i>BioResources</i> , 2018 , 13,	1.3	29
Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. <i>Fuel</i> , 2014 , 125, 15-19	7.1	28
Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. <i>Bioresource Technology</i> , 2020 , 318, 124063	11	28
Hydrothermal Catalytic Deoxygenation of Fatty Acid and Bio-oil with In Situ H2. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 4521-4530	8.3	27
Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2016 , 43, 1551-1560	4.2	27
Quantification of strong and weak acidities in bio-oil via non-aqueous potentiometric titration. <i>Fuel</i> , 2014 , 115, 652-657	7.1	26
Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions. <i>Chemosphere</i> , 2020 , 240, 124889	8.4	26
Quantitative Effects of Biochar Oxidation and Pyrolysis Temperature on the Transport of Pathogenic and Nonpathogenic Escherichia coli in Biochar-Amended Sand Columns. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	24
Synergistic effect of MoW carbides on selective hydrodeoxygenation of guaiacol to oxygen-free aromatic hydrocarbons. <i>Catalysis Science and Technology</i> , 2019 , 9, 1387-1397	5.5	23
	Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawailland Tropical Regions. Energy & Fuels, 2019, 33, 2699-2762 Thermochemical conversion of sugarcane bagasse by fast pyrolysis; High yield of levoglucosan production. Journal of Analytical and Applied Pyrolysis, 2018, 133, 246-253 Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. Fuel, 2013, 103, 512-523 Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasse in a hot plate reactor. Journal of Analytical and Applied Pyrolysis, 2017, 123, 347-363 Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresource Technology, 2017, 223, 74-83 Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin. Journal of Analytical and Applied Pyrolysis, 2016, 122, 106-121 Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al203 catalyst. Journal of Analytical and Applied Pyrolysis, 2016, 118, 136-143 Pyrolysis, 2016, 118, 136-143 Pyrolysis Gas Chromatography Mass Spectrometry Studies to Evaluate High-Temperature Aqueous Pretreatment as a Way to Modify the Composition of Bio-Oil from Fast Pyrolysis of Wheat Straw. Energy & Fuels, 2009, 23, 6242-6522 Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResources, 2018, 13, Effect of particle size on the composition of Bignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel, 2014, 125, 15-19 Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresource Technology, 2020, 318, 124063 Hydrothermal Catalytic Deoxygenation of Fatty Acid and Bio-oil with In Situ H2. ACS Sustainable Chemistry and Engineering, 2018, 6, 4521-4530 Engineering le	Review of Biomass Resources and Conversion Technologies for Alternative Jet Fuel Production in Hawaiiland Tropical Regions. <i>Energy & Fuels</i> , 2019, 33, 2699-2762 Thermochemical conversion of sugarcane bagasse by fast pyrolysis: High yield of levoglucosan production. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018, 133, 246-253 Effect of sulfuric acid addition on the yield and composition of lignin derived oligomers obtained by the auger and fast pyrolysis of Douglas-fir wood. <i>Fuel</i> , 2013, 103, 512-523 Effect of temperature and heating rate on product distribution from the pyrolysis of sugarcane bagasses in a hot plate reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017, 123, 347-363 Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresource Technology, 2017, 223, 74-83 Micro-explosion of liquid intermediates during the fast pyrolysis of sucrose and organosolv lignin. Journal of Analytical and Applied Pyrolysis, 2016, 122, 106-121 Polymerization and cracking during the hydrotreatment of bio-oil and heavy fractions obtained by fractional condensation using Ru/C and NiMo/Al2O3 catalyst. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016, 118, 136-143 Pyrolysis, 2016, 118, 136-143 Pyrolysis, 2016, 118, 136-143 Pyrolysis, 2016, 118, 136-143 Effect of particle size on the composition of Bio-Oil from Fast Pyrolysis of Wheat Straw. Energy & Fuels, 2009, 23, 6242-6252 Chemical Composition and Fuel Properties of Alternative Jet Fuels. BioResources, 2018, 13, 1.3 Effect of particle size on the composition of lignin derived oligomers obtained by fast pyrolysis of beech wood. Fuel, 2014, 125, 15-19 Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell. Bioresource Technology, 2020, 318, 124063 11 Hydrothermal Catalytic Deoxygenation of Fatty Acid and Bio-oil with In Sit

70	Effect of a Vacuum on the Fast Pyrolysis of Cellulose: Nature of Secondary Reactions in a Liquid Intermediate. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 4288-4301	3.9	22
69	Effect of Pyrolysis Temperature and Sulfuric Acid During the Fast Pyrolysis of Cellulose and Douglas Fir in an Atmospheric Pressure Wire Mesh Reactor. <i>Energy & Douglas Fir in an Atmospheric Pressure Wire Mesh Reactor</i> . <i>Energy & Douglas Fir in an Atmospheric Pressure Wire Mesh Reactor</i> .	4.1	22
68	A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Microkinetic Modeling</i> . <i>Industrial & Description of Structure and Modeling</i> .	3.9	22
67	TG-FTIR Method for the Characterization of Bio-oils in Chemical Families. <i>Energy & amp; Fuels</i> , 2017 , 31, 1689-1701	4.1	21
66	Acid-catalysed treatment of the mallee leaf bio-oil with methanol: Effects of molecular structure of carboxylic acids and esters on their conversion. <i>Fuel Processing Technology</i> , 2013 , 106, 569-576	7.2	21
65	Microstructural analysis of nitrogen-doped char by Raman spectroscopy: Raman shift analysis from first principles. <i>Carbon</i> , 2020 , 167, 559-574	10.4	20
64	Co-hydrotreatment of tire pyrolysis oil and vegetable oil for the production of transportation fuels. <i>Fuel Processing Technology</i> , 2017 , 159, 328-339	7.2	19
63	Bioslurry as a Fuel. 7: Spray Characteristics of Bio-Oil and Bioslurry via Impact and Twin-Fluid Atomizers. <i>Energy & Energy & En</i>	4.1	19
62	Production and characterization of H2S and PO43Itarbonaceous adsorbents from anaerobic digested fibers. <i>Biomass and Bioenergy</i> , 2019 , 120, 339-349	5.3	19
61	Identification of the fractions responsible for morphology conservation in lignocellulosic pyrolysis: Visualization studies of sugarcane bagasse and its pseudo-components. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 123, 307-318	6	18
60	Single particle model for biomass pyrolysis with bubble formation dynamics inside the liquid intermediate and its contribution to aerosol formation by thermal ejection. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 124, 204-218	6	18
59	Effect of Pressure on Pyrolysis of Milled Wood Lignin and Acid-Washed Hybrid Poplar Wood. <i>Industrial & Discourse Chemistry Research</i> , 2017 , 56, 9079-9089	3.9	17
58	Characterization of solid and vapor products from thermochemical conversion of municipal solid waste woody fractions. <i>Waste Management</i> , 2019 , 84, 277-285	8.6	17
57	Effect of pyrolysis temperature on aromatic cluster size of cellulose char by quantitative multi cross-polarization 13C NMR with long range dipolar dephasing. <i>Carbon</i> , 2017 , 116, 210-222	10.4	16
56	Selective esterification to produce microalgal biodiesel and enrich polyunsaturated fatty acid using zeolite as a catalyst. <i>RSC Advances</i> , 2015 , 5, 84894-84900	3.7	16
55	Anaerobic digestion of C1¶4 light oxygenated organic compounds derived from the torrefaction of lignocellulosic materials. <i>Fuel Processing Technology</i> , 2015 , 131, 150-158	7.2	16
54	Evolution of Functional Groups during Pyrolysis Oil Upgrading. Energy & Ene	4.1	16
53	Enhancing cation exchange capacity of chars through ozonation. <i>Biomass and Bioenergy</i> , 2015 , 81, 304-3	3543	15

(2020-2015)

52	Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction. <i>Biomass and Bioenergy</i> , 2015 , 81, 117-128	5.3	15	
51	Novel Strategy To Analyze Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Data of Biomass Pyrolysis Oil for Oligomeric Structure Assignment. <i>Energy & Data & Biomass Pyrolysis Oil for Oligomeric Structure Assignment Biomass Pyrolysis Oil Figure Biomass Pyrolysis Oi</i>	4.1	15	
50	Estimation of Heat Transfer Coefficients for Biomass Particles by Direct Numerical Simulation Using Microstructured Particle Models in the Laminar Regime. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 1046-1053	8.3	14	
49	Modified Pyroprobe Captive Sample Reactor: Characterization of Reactor and Cellulose Pyrolysis at Vacuum and Atmospheric Pressures. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 5185-5	2 <i>9</i> 0 ⁹	14	
48	Pyrolysis of Lignocellulosic Biomass 2015 , 413-442		14	
47	Charcoal from anaerobically digested dairy fiber for removal of hydrogen sulfide within biogas. Waste Management, 2018 , 76, 374-382	8.6	14	
46	Strategic assessment of sustainable aviation fuel production technologies: Yield improvement and cost reduction opportunities. <i>Biomass and Bioenergy</i> , 2021 , 145, 105942	5.3	13	
45	Thermodynamic stability of nitrogen functionalities and defects in graphene and graphene nanoribbons from first principles. <i>Carbon</i> , 2019 , 152, 715-726	10.4	11	
44	Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI-FT-ICR-MS Results. <i>ChemSusChem</i> , 2020 , 13, 4428-4445	8.3	10	
43	Torrefaction of Fast-Growing Colombian Wood Species. Waste and Biomass Valorization, 2019, 10, 1655	5-3,6667	10	
42	Bio-Oil Hydrotreatment for Enhancing Solubility in Biodiesel and the Oxydation Stability of Resulting Blends. <i>Frontiers in Chemistry</i> , 2018 , 6, 83	5	9	
41	Unsupported transition metal-catalyzed hydrodeoxygenation of guaiacol. <i>Catalysis Communications</i> , 2017 , 101, 71-76	3.2	9	
40	Pulp mill integration with alcohol-to-jet conversion technology. <i>Fuel Processing Technology</i> , 2020 , 201, 106338	7.2	8	
39	Methodology for estimation of thermal ejection droplet size distribution and intensity during the pyrolysis of sugarcane bagasse and model compounds. <i>Journal of Analytical and Applied Pyrolysis</i> , 2017 , 125, 69-82	6	8	
38	Biomass supply chain equipment for renewable fuels production: A review. <i>Biomass and Bioenergy</i> , 2021 , 148, 106054	5.3	8	
37	Vacuum Pyrolysis of Hybrid Poplar Milled Wood Lignin with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Analysis of Feedstock and Products for the Elucidation of Reaction Mechanisms. <i>Energy & Fuels</i> , 2020 , 34, 14249-14263	4.1	7	
36	Investigation of the Antibacterial Activity and Subacute Toxicity of a Quercus crassifolia Polyphenolic Bark Extract for its Potential Use in Functional Foods. <i>Journal of Food Science</i> , 2019 , 84, 1692-1702	3.4	6	
35	Biomethane Production from Pyrolytic Aqueous Phase: Biomass Acid Washing and Condensation Temperature Effect on the Bio-oil and Aqueous Phase Composition. <i>Bioenergy Research</i> , 2020 , 13, 878-	- 2 1	6	

34	Pyrolysis of lignocellulosic biomass: oil, char, and gas 2020 , 581-619		6
33	Rheological properties and tunable thermoplasticity of phenolic rich fraction of pyrolysis bio-oil. <i>Biomacromolecules</i> , 2013 , 14, 1132-9	6.9	6
32	Evaluation of dry corn ethanol bio-refinery concepts for the production of sustainable aviation fuel. <i>Biomass and Bioenergy</i> , 2021 , 146, 105937	5.3	6
31	Application of nitrogen-based blowing agents as an additive in pyrolysis of cellulose. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 137, 203-211	6	6
30	Lignin Depolymerization: A Comparison of Methods to Analyze Monomers and Oligomers. <i>ChemSusChem</i> , 2020 , 13, 4633-4648	8.3	5
29	Effect of torrefaction temperature on properties of Patula pine. <i>Maderas: Ciencia Y Tecnologia</i> , 2017 , 0-0	1	5
28	Bed Agglomeration during the Steam Gasification of a High-Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue. <i>Energy & Digester Residue</i> .	4.1	5
27	Thermal pretreatment of a high lignin SSF digester residue to increase its softening point. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 142, 103691	6	5
26	Synthesis and Techno-Economic Analysis of Pyrolysis-Oil-Based Biorefineries Using P-Graph. <i>Energy & Energy</i> 8, 2021, 35, 13159-13169	4.1	5
25	Identification and quantification of trace oxygenated compounds in alternative jet fuels: Fluorescence methods for fast detection of phenolic compounds in operational field conditions. <i>Fuel</i> , 2020 , 271, 117652	7.1	4
24	Interrelationship between lignin-rich dichloromethane extracts of hot water-treated wood fibers and high-density polyethylene (HDPE) in wood plastic composite (WPC) production. <i>Holzforschung</i> , 2016 , 70, 31-38	2	4
23	Biofuel and Methyl Levulinate from Biomass-Derived Fractional Condensed Pyrolysis Oil and Alcohol. <i>Energy Technology</i> , 2017 , 5, 205-215	3.5	4
22	Hot Water Extraction of Anaerobic Digested Dairy Fiber for Wood Plastic Composite Manufacturing. <i>BioResources</i> , 2016 , 11,	1.3	4
21	Co-hydrotreatment of the Bio-oil Lignin-Rich Fraction and Vegetable Oil. <i>Energy & Discourt Sensor</i> 2020, 34, 516-529	4.1	4
20	Ternary Phase Diagram of Water/Bio-Oil/Organic Solvent for Bio-Oil Fractionation. <i>Energy & Energy & E</i>	4.1	4
19	Steam gasification of a thermally pretreated high lignin corn stover simultaneous saccharification and fermentation digester residue. <i>Energy</i> , 2017 , 119, 400-407	7.9	3
18	Integrated Process of Biomass Thermochemical Conversion to Obtain Pyrolytic Sugars for Biofuels and Bioproducts 2020 , 285-311		3
17	Ozonation of Pyrolytic Aqueous Phase: Changes in the Content of Phenolic Compounds and Color. <i>Chemical Engineering and Technology</i> , 2016 , 39, 1828-1834	2	3

LIST OF PUBLICATIONS

16	Pyrolytic oils from Amphipterygium adstringens bark inhibit IL-8 production of IL-17-stimulated HaCaT keratinocytes. <i>Journal of Analytical and Applied Pyrolysis</i> , 2020 , 145, 104749	6	3
15	Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 152, 111	1680 ^{.2}	3
14	Nitrogen-doped char as a catalyst for wet oxidation of phenol-contaminated water. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	2
13	Advanced Oxidative Techniques for the Treatment of Aqueous Liquid Effluents from Biomass Thermochemical Conversion Processes: A Review. <i>Energy & Description</i> 2022, 36, 60-79	4.1	2
12	Production of Sustainable Aviation Fuels in Petroleum Refineries: Evaluation of New Bio-Refinery Concepts. <i>Frontiers in Energy Research</i> , 2021 , 9,	3.8	1
11	Sustainability, Business Models, and Techno-Economic Analysis of Biomass Pyrolysis Technologies 2015 , 298-342		1
10	Valorization of municipal solid waste in biorefineries for the creation of a circular economy 2020 , 323-3	347	1
9	Nitrogen and magnesium Co-doped biochar for phosphate adsorption. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	1
8	Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. <i>Biotechnology Advances</i> , 2021 , 107791	17.8	1
7	A novel elemental composition based prediction model for biochar aromaticity derived from machine learning. <i>Artificial Intelligence in Agriculture</i> , 2021 , 5, 133-141	7.8	1
6	Wet oxidation of thermochemical aqueous effluent utilizing char catalysts in microreactors. <i>Journal of Cleaner Production</i> , 2022 , 351, 131222	10.3	1
5	Evaluation of bio-refinery alternatives to produce sustainable aviation fuels in a sugarcane mill. <i>Fuel</i> , 2022 , 321, 123992	7.1	О
4	Biomass carbonization technologies 2022 , 39-92		O
3	Biorefinery Processing of Waste to Supply Cost-Effective and Sustainable Inputs for Two-Stage Microalgal Cultivation. <i>Applied Sciences (Switzerland)</i> , 2022 , 12, 1485	2.6	
2	Sustainability, Business Models, and Techno-Economic Analysis of Biomass Pyrolysis Technologies 2020 , 1339-1373		
1	Novel Amorphous Carbons for the Adsorption of Phosphate: Part I. Elucidation of Chemical Structure of N-Metal-Doped Chars <i>ACS Omega</i> , 2022 , 7, 14490-14504	3.9	