Felipe Zapata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886497/publications.pdf

Version: 2024-02-01

34 papers

1,592 citations

471509 17 h-index 32 g-index

44 all docs 44 docs citations

44 times ranked 2674 citing authors

#	Article	IF	CITATIONS
1	Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS ONE, 2015, 10, e0139068.	2.5	191
2	Agalma: an automated phylogenomics workflow. BMC Bioinformatics, 2013, 14, 330.	2.6	144
3	Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141739.	2.6	144
4	The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Research, 2008, 36, D449-D454.	14.5	135
5	Plant Ontology (PO): a Controlled Vocabulary of Plant Structures and Growth Stages. Comparative and Functional Genomics, 2005, 6, 388-397.	2.0	129
6	INVESTIGATING PROCESSES OF NEOTROPICAL RAIN FOREST TREE DIVERSIFICATION BY EXAMINING THE EVOLUTION AND HISTORICAL BIOGEOGRAPHY OF THE PROTIEAE (BURSERACEAE). Evolution; International Journal of Organic Evolution, 2014, 68, 1988-2004.	2.3	98
7	The Plant Structure Ontology, a Unified Vocabulary of Anatomy and Morphology of a Flowering Plant. Plant Physiology, 2007, 143, 587-599.	4.8	91
8	Pairwise comparisons across species are problematic when analyzing functional genomic data. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E409-E417.	7.1	77
9	To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in ââ,¬Å"Terebinthaceaeââ,¬Â•(Anacardiaceae and Burseraceae). Frontiers in Genetics, 2014, 5, 409.	. 2.3	75
10	Species Delimitation: Inferring Gaps in Morphology across Geography. Systematic Biology, 2012, 61, 179.	5.6	70
11	Whole-Plant Growth Stage Ontology for Angiosperms and Its Application in Plant Biology. Plant Physiology, 2006, 142, 414-428.	4.8	56
12	Issues and Perspectives in Species Delimitation using Phenotypic Data: Atlantean Evolution in Darwin's Finches. Systematic Biology, 2018, 67, 181-194.	5.6	48
13	The importance of environmental heterogeneity and spatial distance in generating phylogeographic structure in edaphic specialist and generalist tree species of <i>Protium</i> (Burseraceae) across the Amazon Basin. Journal of Biogeography, 2013, 40, 646-661.	3.0	38
14	Plant science decadal vision 2020–2030: Reimagining the potential of plants for a healthy and sustainable future. Plant Direct, 2020, 4, e00252.	1.9	26
15	Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Molecular Phylogenetics and Evolution, 2018, 127, 823-833.	2.7	25
16	The genomic revolution and species delimitation in birds (and other organisms): Why phenotypes should not be overlooked. Auk, 2021, 138, .	1.4	23
17	Toward a statistically explicit understanding of <i>de novo</i> sequence assembly. Bioinformatics, 2013, 29, 2959-2963.	4.1	22
18	Natural selection maintains species despite frequent hybridization in the desert shrub <i>Encelia</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33373-33383.	7.1	21

#	Article	IF	CITATIONS
19	Phylogenetics of (i>Escallonia (i) (Escalloniaceae) based on plastid DNA sequence data. Botanical Journal of the Linnean Society, 2013, 173, 442-451.	1.6	18
20	A multilocus phylogenetic analysis of <i>Escallonia</i> (Escalloniaceae): Diversification in montane South America. American Journal of Botany, 2013, 100, 526-545.	1.7	17
21	An Integrated Perspective on Phylogenetic Workflows. Trends in Ecology and Evolution, 2016, 31, 116-126.	8.7	16
22	Stem cells in Nanomia bijuga (Siphonophora), a colonial animal with localized growth zones. EvoDevo, 2015, 6, 22.	3.2	14
23	Evolution of Gene Expression across Species and Specialized Zooids in Siphonophora. Molecular Biology and Evolution, 2022, 39, .	8.9	14
24	Diversification of the monoterpene synthase gene family (TPSb) in Protium, a highly diverse genus of tropical trees. Molecular Phylogenetics and Evolution, 2013, 68, 432-442.	2.7	13
25	Phylogenetic inference of where species spread or split across barriers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2116948119.	7.1	12
26	Revising transcriptome assemblies with phylogenetic information. PLoS ONE, 2021, 16, e0244202.	2.5	11
27	Diversification, disparification and hybridization in the desert shrubs <i>Encelia</i> . New Phytologist, 2021, 230, 1228-1241.	7.3	10
28	Bayesian Genome Assembly and Assessment by Markov Chain Monte Carlo Sampling. PLoS ONE, 2014, 9, e99497.	2.5	7
29	Relict inland mangrove ecosystem reveals Last Interglacial sea levels. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
30	Correction to Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142941.	2.6	3
31	An integrative genomic and phenomic analysis to investigate the nature of plant species in Escallonia (Escalloniaceae). Scientific Reports, 2021, 11, 24013.	3.3	3
32	Monographs as a nexus for building extended specimen networks using persistent identifiers. , 2022, 1 , .		2
33	A new species of <i>Escallonia</i> (Escalloniaceae) from the inter-Andean tropical dry forests of Bolivia. Peerl, 2019, 7, e6328.	2.0	1
34	Fast Likelihood Calculations for Automatic Identification of Macroevolutionary Rate Heterogeneity in Continuous and Discrete Traits. Systematic Biology, 2022, 71, 1307-1318.	5.6	0