Chao-Xi Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886466/publications.pdf Version: 2024-02-01

Снас-Хітіло

#	Article	IF	CITATIONS
1	Occurrence and Detection of Carbendazim Resistance in <i>Botryosphaeria dothidea</i> from Apple Orchards in China. Plant Disease, 2022, 106, 207-214.	0.7	10
2	Cytological Observation of the Infectious Process of <i>Venturia carpophila</i> on Peach Leaves. Plant Disease, 2022, 106, 79-86.	0.7	3
3	Sensitivity of <i>Colletotrichum nymphaeae</i> to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China. Plant Disease, 2022, 106, 165-173.	0.7	9
4	Hostâ€induced gene silencing of fungalâ€specific genes of <i>Ustilaginoidea virens</i> confers effective resistance to rice false smut. Plant Biotechnology Journal, 2022, 20, 253-255.	4.1	16
5	Identification, Genetic Diversity, and Chemical Control of <i>Xanthomonas arboricola</i> pv. <i>pruni</i> in China. Plant Disease, 2022, 106, 2415-2423.	0.7	1
6	Colletotrichum Species Associated with Peaches in China. Journal of Fungi (Basel, Switzerland), 2022, 8, 313.	1.5	20
7	Transcriptomic Analysis of Resistant and Wild-Type Isolates Revealed Fludioxonil as a Candidate for Controlling the Emerging Isoprothiolane Resistant Populations of Magnaporthe oryzae. Frontiers in Microbiology, 2022, 13, 874497.	1.5	3
8	MoWhi2 Mediates Mitophagy to Regulate Conidiation and Pathogenesis in Magnaporthe oryzae. International Journal of Molecular Sciences, 2022, 23, 5311.	1.8	4
9	A secreted fungal effector suppresses rice immunity through host histone hypoacetylation. New Phytologist, 2022, 235, 1977-1994.	3.5	24
10	Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum. Pesticide Biochemistry and Physiology, 2022, 184, 105130.	1.6	1
11	Diaporthe citri: A Fungal Pathogen Causing Melanose Disease. Plants, 2022, 11, 1600.	1.6	2
12	Development of a loopâ€mediated isothermal amplification method for the rapid detection of Venturia carpophila on peach. Pest Management Science, 2021, 77, 1383-1391.	1.7	15
13	Fungicidal Actions and Resistance Mechanisms of Prochloraz to <i>Penicillium digitatum</i> . Plant Disease, 2021, 105, 408-415.	0.7	19
14	Morphology Characterization, Molecular Phylogeny, and Pathogenicity of Diaporthe passifloricola on Citrus reticulata cv. Nanfengmiju in Jiangxi Province, China. Plants, 2021, 10, 218.	1.6	5
15	A novel transcription factor UvCGBP1 regulates development and virulence of rice false smut fungus <i>Ustilaginoidea virens</i> . Virulence, 2021, 12, 1563-1579.	1.8	13
16	Comprehensive identification of lysine 2â€hydroxyisobutyrylated proteins in <i>Ustilaginoidea virens</i> reveals the involvement of lysine 2â€hydroxyisobutyrylation in fungal virulence. Journal of Integrative Plant Biology, 2021, 63, 409-425.	4.1	22
17	Comprehensive transcriptome profiling reveals abundant long nonâ€coding <scp>RNAs</scp> associated with development of the rice false smut fungus, <i>Ustilaginoidea virens</i> . Environmental Microbiology, 2021, 23, <u>4998-5013</u> .	1.8	21
18	Effect of Chemical Seed Treatment on Rice False Smut Control in Field. Plant Disease, 2021, 105, 3218-3223.	0.7	7

#	Article	IF	CITATIONS
19	Diversity of Diaporthe species associated with melanose disease on citrus trees in Jiangxi Province, China. European Journal of Plant Pathology, 2021, 160, 259-263.	0.8	3
20	Phylogenetic and Haplotype Network Analyses of Diaporthe eres Species in China Based on Sequences of Multiple Loci. Biology, 2021, 10, 179.	1.3	16
21	Pyrimethanil Sensitivity and Resistance Mechanisms in <i>Penicillium digitatum</i> . Plant Disease, 2021, 105, 1758-1764.	0.7	3
22	First Report of Atypical Scab Caused by <i>Venturia asperata</i> on Apple in China. Plant Disease, 2021, 105, 1858.	0.7	1
23	Quantitative Proteomics Analysis Reveals the Function of the Putative Ester Cyclase UvEC1 in the Pathogenicity of the Rice False Smut Fungus Ustilaginoidea virens. International Journal of Molecular Sciences, 2021, 22, 4069.	1.8	10
24	MoWhi2 regulates appressorium formation and pathogenicity via the MoTor signalling pathway in <i>Magnaporthe oryzae</i> . Molecular Plant Pathology, 2021, 22, 969-983.	2.0	18
25	Sensitivity of <i>Colletotrichum fructicola</i> and <i>Colletotrichum siamense</i> of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant Disease, 2021, 105, 3459-3465.	0.7	11
26	Sensitivity of <i>Venturia carpophila</i> from China to Five Fungicides and Characterization of Carbendazim-Resistant Isolates. Plant Disease, 2021, 105, 3990-3997.	0.7	6
27	Whole-Genome Sequence of Diaporthe citri Isolate NFHF-8-4, the Causal Agent of Citrus Melanose. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-01-21-0004.	1.4	4
28	Monilinia fructicola on loquat: An old pathogen invading a new host. Journal of Integrative Agriculture, 2021, 20, 2009-2014.	1.7	7
29	Genome Sequence of Venturia carpophila, the Causal Agent of Peach Scab. Molecular Plant-Microbe Interactions, 2021, 34, MPMI-11-20-0321.	1.4	6
30	<i>Ustilaginoidea virens</i> modulates lysine 2â€hydroxyisobutyrylation in rice flowers during infection. Journal of Integrative Plant Biology, 2021, 63, 1801-1814.	4.1	22
31	Genome-Wide Identification and Functional Characterization of CCHC-Type Zinc Finger Genes in Ustilaginoidea virens. Journal of Fungi (Basel, Switzerland), 2021, 7, 947.	1.5	7
32	Recombinase Polymerase Amplification/Cas12a-Based Identification of Xanthomonas arboricola pv. pruni on Peach. Frontiers in Plant Science, 2021, 12, 740177.	1.7	13
33	UvKmt6-mediated H3K27 trimethylation is required for development, pathogenicity, and stress response in <i>Ustilaginoidea virens</i> . Virulence, 2021, 12, 2972-2988.	1.8	16
34	Identification of Monilia species in Tibet and characterization of M. yunnanensis in China. Plant Disease, 2021, , .	0.7	0
35	<i>UvCom1</i> Is an Important Regulator Required for Development and Infection in the Rice False Smut Fungus <i>Ustilaginoidea virens</i> . Phytopathology, 2020, 110, 483-493.	1.1	29
36	The â€~pears and lemons' protein <scp>UvPal1</scp> regulates development and virulence of <i>Ustilaginoidea virens</i> . Environmental Microbiology, 2020, 22, 5414-5432.	1.8	19

#	Article	IF	CITATIONS
37	Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus. Plants, 2020, 9, 329.	1.6	16
38	<i>MfOfd1</i> is crucial for stress responses and virulence in the peach brown rot fungus <i>Monilinia fructicola</i> . Molecular Plant Pathology, 2020, 21, 820-833.	2.0	8
39	LAMP detection of the genetic element â€~Mona' associated with DMI resistance in <i>Monilinia fructicola</i> . Pest Management Science, 2019, 75, 779-786.	1.7	18
40	Development of rice conidiation media for Ustilaginoidea virens. PLoS ONE, 2019, 14, e0217667.	1.1	6
41	Fungicide resistance of Botrytis cinerea from strawberry to procymidone and zoxamide in Hubei, China. Phytopathology Research, 2019, 1, .	0.9	33
42	The Bax inhibitor UvBl-1, a negative regulator of mycelial growth and conidiation, mediates stress response and is critical for pathogenicity of the rice false smut fungus Ustilaginoidea virens. Current Genetics, 2019, 65, 1185-1197.	0.8	36
43	Phylogenetic Analysis and Fungicide Baseline Sensitivities of <i>Monilia mumecola</i> in China. Plant Disease, 2019, 103, 2231-2236.	0.7	3
44	Rapid detection of benzimidazole resistance in Botrytis cinerea by loop-mediated isothermal amplification. Phytopathology Research, 2019, 1, .	0.9	14
45	Effects of SHAM on the Sensitivity of <i>Sclerotinia sclerotiorum</i> and <i>Botrytis cinerea</i> to Qol Fungicides. Plant Disease, 2019, 103, 1884-1888.	0.7	9
46	Hormetic Effects of Mixtures of Carbendazim and Iprodione on the Virulence of <i>Botrytis cinerea</i> . Plant Disease, 2019, 103, 95-101.	0.7	8
47	Development of a LAMP Method for Detecting SDHI Fungicide Resistance in <i>Botrytis cinerea</i> . Plant Disease, 2018, 102, 1612-1618.	0.7	35
48	A Putative Zn2Cys6 Transcription Factor Is Associated With Isoprothiolane Resistance in Magnaporthe oryzae. Frontiers in Microbiology, 2018, 9, 2608.	1.5	24
49	Sensitivity of <i>Botrytis cinerea</i> From Nectarine/Cherry in China to Six Fungicides and Characterization of Resistant Isolates. Plant Disease, 2018, 102, 2578-2585.	0.7	35
50	Functional Evaluation of the Signal Peptides of Secreted Proteins. Bio-protocol, 2018, 8, e2839.	0.2	43
51	Function of the genetic element â€~Mona' associated with fungicide resistance in <i>Monilinia fructicola</i> . Molecular Plant Pathology, 2017, 18, 90-97.	2.0	33
52	Genome-wide identification and analysis of the basic leucine zipper (bZIP) transcription factor gene family in <i>Ustilaginoidea virens</i> . Genome, 2017, 60, 1051-1059.	0.9	45
53	Identification of two Monilia species from apricot in China. Journal of Integrative Agriculture, 2017, 16, 2496-2503.	1.7	12
54	Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary. Environmental Microbiology, 2016, 18, 3840-3849.	1.8	75

#	Article	IF	CITATIONS
55	Exploring mechanisms of resistance to dimethachlone in <i>Sclerotinia sclerotiorum</i> . Pest Management Science, 2016, 72, 770-779.	1.7	47
56	Fitness and Competitive Ability of <i>Alternaria alternata</i> Field Isolates with Resistance to SDHI, QoI, and MBC Fungicides. Plant Disease, 2015, 99, 1744-1750.	0.7	37
57	Identification and Characterization of Three <i>Monilinia</i> Species from Plum in China. Plant Disease, 2015, 99, 1775-1783.	0.7	24
58	The Y137H mutation of VvCYP51 gene confers the reduced sensitivity to tebuconazole in Villosiclava virens. Scientific Reports, 2015, 5, 17575.	1.6	27
59	Effect of rice growth stage, temperature, relative humidity and wetness duration on infection of rice panicles by Villosiclava virens. European Journal of Plant Pathology, 2015, 141, 15-25.	0.8	38
60	Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 2014, 5, 3849.	5.8	202
61	Evolutionary analysis revealed the horizontal transfer of the Cyt b gene from Fungi to Chromista. Molecular Phylogenetics and Evolution, 2014, 76, 155-161.	1.2	1
62	Genetic Diversity Analysis Reveals that Geographical Environment Plays a More Important Role than Rice Cultivar in Villosiclava virens Population Selection. Applied and Environmental Microbiology, 2014, 80, 2811-2820.	1.4	34
63	Location-Specific Fungicide Resistance Profiles and Evidence for Stepwise Accumulation of Resistance in <i>Botrytis cinerea</i> . Plant Disease, 2014, 98, 1066-1074.	0.7	50
64	Baseline sensitivity of Monilia yunnanensis to the DMI fungicides tebuconazole and triadimefon. European Journal of Plant Pathology, 2013, 136, 651-655.	0.8	16
65	Frequent Gain and Loss of Introns in Fungal Cytochrome b Genes. PLoS ONE, 2012, 7, e49096.	1.1	33
66	Monilinia Species Causing Brown Rot of Peach in China. PLoS ONE, 2011, 6, e24990.	1.1	108
67	Selection of a Suitable Medium to Determine Sensitivity of Monilinia fructicola Mycelium to SDHI Fungicides. Journal of Phytopathology, 2011, 159, 616-620.	0.5	23
68	An intron in the cytochrome b gene of Monilinia fructicola mitigates the risk of resistance development to Qol fungicides. Pest Management Science, 2010, 66, 1308-1315.	1.7	37
69	Analysis of the Abnormal Segregation of Pathogenicity in Magnaporthe grisea by Using a Genetic Cross of Oryza and Eleusine Isolates. Agricultural Sciences in China, 2010, 9, 383-391.	0.6	Ο
70	Adaptation to Fungicides in <i>Monilinia fructicola</i> Isolates with Different Fungicide Resistance Phenotypes. Phytopathology, 2008, 98, 230-238.	1.1	51
71	Occurrence and Detection of the DMI Resistance-Associated Genetic Element â€~Mona' in <i>Monilinia fructicola</i> . Plant Disease, 2008, 92, 1099-1103.	0.7	64
72	The Cytochrome P450 Lanosterol 14α-Demethylase Gene Is a Demethylation Inhibitor Fungicide Resistance Determinant in <i>Monilinia fructicola</i> Field Isolates from Georgia. Applied and Environmental Microbiology, 2008, 74, 359-366.	1.4	128

#	Article	IF	CITATIONS
73	The 1.6Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome 1 sequences. Mycological Research, 2007, 111, 232-239.	2.5	22
74	Genetic Mapping and Chromosomal Assignment of Magnaporthe oryzae Avirulence Genes AvrPik, AvrPiz, and AvrPiz-t Controlling Cultivar Specificity on Rice. Phytopathology, 2005, 95, 640-647.	1.1	37
75	Relationship between Avirulence Genes of the Same Family in Rice Blast Fungus Magnaporthe grisea. Journal of General Plant Pathology, 2002, 68, 300-306.	0.6	27