Renlong Xin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886359/publications.pdf Version: 2024-02-01

471509 580821 1,036 25 25 17 h-index citations g-index papers 25 25 25 600 docs citations times ranked citing authors all docs

RENLONG XIN

#	Article	lF	CITATIONS
1	Effect of Precipitates in Mgâ^'Sm Alloys on Their Deformation Behavior and Yield Asymmetry. Advanced Engineering Materials, 2022, 24, .	3.5	2
2	Revealing the Texture Evolution and Compressive Anisotropy in Free-End Twisted AZ31 Rods. Journal of Materials Engineering and Performance, 2021, 30, 1157-1166.	2.5	3
3	Evaluation of Twinning Behavior in Rolling of Mg Alloys with Three Kinds of Textures by a Generalized Schmid Factor. Metals and Materials International, 2020, 26, 1366-1372.	3.4	9
4	Influence of Aging Prior to Extrusion on the Microstructure and Mechanical Properties of an Extruded AZ91 Alloy. Advanced Engineering Materials, 2020, 22, 2000201.	3.5	7
5	Effect of special primary α grain on variant selection of secondary α phase in a near-α titanium alloy. Materials Letters, 2020, 271, 127766.	2.6	5
6	Evaluating the orientation relationship of prismatic precipitates generated by detwinning in Mg alloys. Acta Materialia, 2020, 195, 263-273.	7.9	26
7	Regulating Precipitates by Simple Cold Deformations to Strengthen Mg Alloys: A Review. Materials, 2019, 12, 2507.	2.9	18
8	Effects of precipitate type on twin/slip activity in ZK60 alloys and yield asymmetry. Journal of Alloys and Compounds, 2019, 792, 610-616.	5.5	35
9	Evaluation of the reliability of twin variant analysis in Mg alloys by in situ EBSD technique. Journal of Magnesium and Alloys, 2019, 7, 258-263.	11.9	17
10	Regulating precipitate orientation in Mg-Al alloys by coupling twinning, aging and detwinning processes. Scripta Materialia, 2019, 158, 131-135.	5.2	44
11	Evolution of gradient microstructure in an extruded AZ31 rod during torsion and annealing and its effects on mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 78-88.	5.6	47
12	Evaluation of Textural Effect on the Rollability of AZ31 Alloys by Wedgeâ€Shaped Sample Design. Advanced Engineering Materials, 2017, 19, 1700035.	3.5	2
13	Tailoring the Microstructure and Mechanical Property of AZ80 Alloys by Multiple Twinning and Aging Precipitation. Advanced Engineering Materials, 2017, 19, 1700332.	3.5	10
14	Enhancing the age-hardening response of rolled AZ80 alloy by pre-twinning deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 152-156.	5.6	47
15	The mechanism of twinning activation and variant selection in magnesium alloys dominated by slip deformation. Journal of Alloys and Compounds, 2016, 687, 352-359.	5.5	46
16	Effect of cold rolling on microstructure and mechanical property of extruded Mg–4Sm alloy during aging. Materials Characterization, 2016, 112, 81-86.	4.4	18
17	Geometrical compatibility factor analysis of paired extension twins in extruded Mg–3Al–1Zn alloys. Materials and Design, 2015, 86, 656-663.	7.0	60
18	Dependence of tensile and compressive deformation behavior on aging precipitation in rolled ZK60 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 639, 724-731.	5.6	31

Renlong Xin

#	Article	IF	CITATIONS
19	Enhancing stretch formability of rolled Mg sheets by pre-inducing contraction twins and recrystallization annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 369-373.	5.6	50
20	Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 106-115.	5.6	35
21	Enhancing the strength of rolled ZK60 alloys via the combined use of twinning deformation and aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 68-75.	5.6	54
22	Effect of aging precipitation on mechanical anisotropy of an extruded Mg–Y–Nd alloy. Materials & Design, 2012, 34, 384-388.	5.1	47
23	Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scripta Materialia, 2012, 66, 1061-1064.	5.2	209
24	Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 588-593.	5.6	167
25	Structural examination of aging precipitation in a Mg–Y–Nd alloy at different temperatures. Materials Characterization, 2011, 62, 535-539.	4.4	47