Bjarne Almqvist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6886355/publications.pdf Version: 2024-02-01

RIADNE ALMOVIST

#	Article	IF	CITATIONS
1	Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophysical Journal International, 2012, 189, 1475-1482.	1.0	134
2	Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure. Reviews of Geophysics, 2017, 55, 367-433.	9.0	127
3	Synchrotron-based X-ray tomographic microscopy for rock physics investigations. Geophysics, 2013, 78, D53-D64.	1.4	88
4	Texture and diagenesis of Ordovician shale from the Canning Basin, Western Australia: Implications for elastic anisotropy and geomechanical properties. Marine and Petroleum Geology, 2015, 59, 56-71.	1.5	44
5	COSC-1 – drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia. Scientific Drilling, 0, 19, 1-11.	1.0	41
6	3D reflection seismic imaging at the 2.5km deep COSC-1 scientific borehole, central Scandinavian Caledonides. Tectonophysics, 2016, 689, 40-55.	0.9	32
7	Melt migration in basalt columns driven by crystallization-induced pressure gradients. Nature Communications, 2011, 2, 299.	5.8	31
8	Syn-Emplacement Fracturing in the Sandfell Laccolith, Eastern Iceland—Implications for Rhyolite Intrusion Growth and Volcanic Hazards. Frontiers in Earth Science, 2018, 6, .	0.8	29
9	Metamorphic Zonation by Outâ€ofâ€Sequence Thrusting at Backâ€Stepping Subduction Zones: Sequential Accretion of the Caledonian Internides, Central Sweden. Tectonics, 2018, 37, 3545-3576.	1.3	24
10	Internal flow structures in columnar jointed basalt from Hrepphólar, Iceland: II. Magnetic anisotropy and rock magnetic properties. Bulletin of Volcanology, 2012, 74, 1667-1681.	1.1	21
11	Progressive Growth of the Cerro Bayo Cryptodome, Chachahuén Volcano, Argentina—Implications for Viscous Magma Emplacement. Journal of Geophysical Research: Solid Earth, 2019, 124, 7934-7961.	1.4	21
12	Unraveling magnetic fabrics. International Journal of Earth Sciences, 2012, 101, 613-624.	0.9	20
13	Seismic anisotropy in mid to lower orogenic crust: Insights from laboratory measurements of Vp and Vs in drill core from central Scandinavian Caledonides. Tectonophysics, 2016, 692, 14-28.	0.9	20
14	Seismic anisotropy in the Morcles nappe shear zone: Implications for seismic imaging of crustal scale shear zones. Tectonophysics, 2013, 603, 162-178.	0.9	19
15	Bulk strain in orogenic wedges based on insights from magnetic fabrics in sandbox models. Geology, 2018, 46, 483-486.	2.0	18
16	Late Pleistocene Chronology of Sediments From the Yermak Plateau and Uncertainty in Dating Based on Geomagnetic Excursions. Geochemistry, Geophysics, Geosystems, 2019, 20, 3289-3310.	1.0	18
17	Application of differential effective medium, magnetic pore fabric analysis, and X-ray microtomography to calculate elastic properties of porous and anisotropic rock aggregates. Journal of Geophysical Research, 2011, 116, .	3.3	17
18	Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden. Scientific Reports, 2016, 6, 27635.	1.6	17

BJARNE ALMQVIST

#	Article	IF	CITATIONS
19	Image log analysis of in situ stress orientation, breakout growth, and natural geologic structures to 2.5Akm depth in central Scandinavian Caledonides: Results from the COSCâ€1 borehole. Journal of Geophysical Research: Solid Earth, 2017, 122, 3999-4019.	1.4	17
20	Magnetic fabrics of the Morcles Nappe complex. Tectonophysics, 2009, 466, 89-100.	0.9	16
21	Magnetic anisotropy reveals Neogene tectonic overprint in highly strained carbonate mylonites from the Morcles nappe, Switzerland. Journal of Structural Geology, 2011, 33, 1010-1022.	1.0	16
22	Seismic anisotropy from compositional banding in granulites from the deep magmatic arc of Fiordland, New Zealand. Earth and Planetary Science Letters, 2017, 477, 156-167.	1.8	16
23	Magnetic susceptibility as a tool to study deformed calcite with variable impurity content. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	15
24	Anisotropy of magnetic susceptibility (AMS) and diamagnetic fabrics in the Durness Limestone, NW Scotland. Journal of Structural Geology, 2012, 34, 54-60.	1.0	15
25	Ultrasonic velocity drops and anisotropy reduction in mica-schist analogues due to melting with implications for seismic imaging of continental crust. Earth and Planetary Science Letters, 2015, 425, 24-33.	1.8	15
26	The Lake Natron Footprint Tuff (northern Tanzania): volcanic source, depositional processes and age constraints from field relations. Journal of Quaternary Science, 2016, 31, 526-537.	1.1	13
27	Determining the timing of formation of the Rawil Depression in the Helvetic Alps by palaeomagnetic and structural methods. Geological Society Special Publication, 2016, 425, 145-168.	0.8	13
28	The Ronda peridotite (Spain): A natural template for seismic anisotropy in subduction wedges. Geophysical Research Letters, 2014, 41, 8752-8758.	1.5	12
29	Magnetic susceptibility parameters as proxies for desert sediment provenance. Aeolian Research, 2020, 46, 100615.	1.1	12
30	3D rock fabric analysis using micro-tomography: An introduction to the open-source TomoFab MATLAB code. Computers and Geosciences, 2020, 138, 104444.	2.0	12
31	Seismic properties of the Kohistan oceanic arc root: Insights from laboratory measurements and thermodynamic modeling. Geochemistry, Geophysics, Geosystems, 2013, 14, 1819-1841.	1.0	11
32	Palaeoenvironmental implications from Lower Volga loess - Joint magnetic fabric and multi-proxy analyses. Quaternary Science Reviews, 2021, 267, 107057.	1.4	11
33	Correcting distorted paleosecular variation in late glacial lacustrine clay. Physics of the Earth and Planetary Interiors, 2008, 166, 30-43.	0.7	10
34	Elastic properties of anisotropic synthetic calciteâ€muscovite aggregates. Journal of Geophysical Research, 2010, 115, .	3.3	9
35	Numerical support of laboratory experiments: Attenuation and velocity estimations. Acta Geophysica, 2014, 62, 1-11.	1.0	9
36	Specimen size and improved precision with the Molspin spinner magnetometer. Earth and Planetary Science Letters, 2006, 241, 381-386.	1.8	8

BJARNE ALMQVIST

#	Article	IF	CITATIONS
37	The Arctic Ocean Manganese Cycle, an Overlooked Mechanism in the Anomalous Palaeomagnetic Sedimentary Record. Frontiers in Earth Science, 2020, 8, .	0.8	8
38	Paleomagnetic studies of rapakivi complexes in the Fennoscandian shield – Implications to the origin of Proterozoic massif-type anorthosite magmatism. Precambrian Research, 2021, 365, 106406.	1.2	8
39	Influence of décollement friction on anisotropy of magnetic susceptibility in a fold-and-thrust belt model. Journal of Structural Geology, 2021, 144, 104274.	1.0	7
40	The formation of the Namib Sand Sea inferred from the spatial pattern of magnetic rock fragments. Earth and Planetary Science Letters, 2014, 395, 168-172.	1.8	6
41	Initial surface failure and wear of cemented carbides in sliding contact with different rock types. Wear, 2018, 408-409, 43-55.	1.5	6
42	Coring induced sediment fabrics at IODP Expedition 347 Sites M0061 and M0062 identified by anisotropy of magnetic susceptibility (AMS): criteria for accepting palaeomagnetic data. Geophysical Journal International, 2019, 217, 1089-1107.	1.0	6
43	Coreâ€Logâ€Seismic Integration in Metamorphic Rocks and Its Implication for the Regional Geology: A Case Study for the ICDP Drilling Project COSCâ€1, Sweden. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009376.	1.0	6
44	Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 2021, 820, 229113.	0.9	6
45	3D magnetotelluric modelling of the Alnö alkaline and carbonatite ring complex, central Sweden. Tectonophysics, 2016, 679, 218-234.	0.9	5
46	Magnetic fabric development in the Lower Seve thrust from the COSC-1 drilling, Swedish Caledonides. Tectonophysics, 2019, 751, 212-228.	0.9	5
47	Decrypting Magnetic Fabrics (AMS, AARM, AIRM) Through the Analysis of Mineral Shape Fabrics and Distribution Anisotropy. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021895.	1.4	5
48	Seismic anisotropy of mid crustal orogenic nappes and their bounding structures: An example from the Middle Allochthon (Seve Nappe) of the Central Scandinavian Caledonides. Tectonophysics, 2021, 819, 229045.	0.9	5
49	Decoupling of paramagnetic and ferrimagnetic AMS development during the experimental chemical compaction of illite shale powder. Geophysical Journal International, 2013, 192, 975-985.	1.0	4
50	Mechanics, microstructure and AMS evolution of a synthetic porphyritic calcite aggregate deformed in torsion. Tectonophysics, 2015, 655, 41-57.	0.9	4
51	Crystal rotations and alignment in spatially varying magma flows: 2-D examples of common subvolcanic flow geometries. Geophysical Journal International, 2021, 226, 709-727.	1.0	4
52	COSC-2 – drilling the basal décollement and underlying margin of palaeocontinent Baltica in the Paleozoic Caledonide Orogen of Scandinavia. Scientific Drilling, 0, 30, 43-57.	1.0	4
53	Magnetic characterisation of magnetite and hematite from the Blötberget apatite – iron oxide depos (Bergslagen), south-central Sweden. Canadian Journal of Earth Sciences, 2019, 56, 948-957. 	o.6	3
54	Magnetic properties of pseudotachylytes from western Jäntland, central Swedish Caledonides. Solid Earth, 2020, 11, 807-828.	1.2	3

4

BJARNE ALMQVIST

#	Article	IF	CITATIONS
55	The role of stress on chemical compaction of illite shale powder. Geological Society Special Publication, 2015, 409, 125-147.	0.8	2
56	Identification of gas inflow zones in the COSC-1 borehole (JĀĦtland, central Sweden) by drilling mud gas monitoring, downhole geophysical logging and drill core analysis. Applied Geochemistry, 2020, 114, 104513.	1.4	2
57	Petrofabric development during experimental partial melting and recrystallization of a micaâ€schist analog. Geochemistry, Geophysics, Geosystems, 2015, 16, 3472-3483.	1.0	1
58	Magnetic Fabric Signature Within a Thrust Imbricate; an Analog Modeling Approach. Tectonics, 2022, 41, .	1.3	1
59	The Collisional Orogeny in the Scandinavian Caledonides (COSC) project: Some results and current status. Acta Geologica Sinica, 2019, 93, 33-35.	0.8	0
60	Numerical support of laboratory experiments: Attenuation and velocity estimations. , 2012, , .		0
61	Impact of texture and diagenesis on the elastic anisotropy and geomechanical properties of shales. , 2014, , .		0
62	Elastic Wave Propagation in a Stainless-Steel Standard and Verification of a COMSOL Multiphysics Numerical Elastic Wave Toolbox. Resources, 2022, 11, 49.	1.6	0