Veda Krishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/688632/publications.pdf

Version: 2024-02-01

		566801	610482
51	791	15	24
papers	citations	h-index	g-index
52	52	52	807
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Starch accumulation in rice grains subjected to drought during grain filling stage. Plant Physiology and Biochemistry, 2019, 142, 440-451.	2.8	82
2	Chemical Chaperones Mitigate Experimental Asthma by Attenuating Endoplasmic Reticulum Stress. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 923-931.	1.4	51
3	Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review. International Journal of Biological Macromolecules, 2021, 182, 626-638.	3.6	44
4	Dietary prospects of coconut oil for the prevention and treatment of Alzheimer's disease (AD): A review of recent evidences. Trends in Food Science and Technology, 2021, 112, 201-211.	7.8	34
5	Role of nutraceutical starch and proanthocyanidins of pigmented rice in regulating hyperglycemia: Enzyme inhibition, enhanced glucose uptake and hepatic glucose homeostasis using in vitro model. Food Chemistry, 2021, 335, 127505.	4.2	32
6	Impact of soaking and germination durations on antioxidants and anti-nutrients of black and yellow soybean (Glycine max. L) varieties. Journal of Plant Biochemistry and Biotechnology, 2015, 24, 355-358.	0.9	30
7	Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food Chemistry, 2018, 245, 246-253.	4.2	27
8	Metabolomic signatures in nuclear magnetic resonance spectra of exhaled breath condensate identify asthma. European Respiratory Journal, 2012, 39, 500-502.	3.1	26
9	Cooking fat types alter the inherent glycaemic response of niche rice varieties through resistant starch (RS) formation. International Journal of Biological Macromolecules, 2020, 162, 1668-1681.	3.6	26
10	Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Scientific Reports, 2019, 9, 7744.	1.6	25
11	Pullulanase activity: A novel indicator of inherent resistant starch in rice (Oryza sativa. L). International Journal of Biological Macromolecules, 2020, 152, 1213-1223.	3.6	24
12	Nutritional composition patterns and application of multivariate analysis to evaluate indigenous		

#	Article	IF	CITATIONS
19	Plant growth regulator induced mitigation of oxidative burst helps in the management of drought stress in rice (Oryza sativa L.). Environmental and Experimental Botany, 2021, 185, 104413.	2.0	16
20	Starch molecular configuration and starch-sugar homeostasis: Key determinants of sweet sensory perception and starch hydrolysis in pearl millet (Pennisetum glaucum). International Journal of Biological Macromolecules, 2021, 183, 1087-1095.	3.6	15
21	Interactome of millet-based food matrices: A review. Food Chemistry, 2022, 385, 132636.	4.2	15
22	Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds. Journal of Agricultural and Food Chemistry, 2017, 65, 11054-11064.	2.4	14
23	Phytic acid dynamics during seed development and it's composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified extraction and HPLC method. Journal of Plant Biochemistry and Biotechnology, 2016, 25, 367-374.	0.9	13
24	Sodium nitroprusside enhances regeneration and alleviates salinity stress in soybean [Glycine max (L.) Merrill]. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101173.	1.5	13
25	Development of NIR spectroscopy based prediction models for nutritional profiling of pearl millet (Pennisetum glaucum (L.)) R.Br: A chemometrics approach. LWT - Food Science and Technology, 2021, 149, 111813.	2.5	13
26	Iron and Zinc at a cross-road: A trade-off between micronutrients and anti-nutritional factors in pearl millet flour for enhancing the bioavailability. Journal of Food Composition and Analysis, 2022, 111, 104591.	1.9	13
27	Polyphenol-enriched extract from pearl millet (Pennisetum glaucum) inhibits key enzymes involved in post prandial hyper glycemia (î±-amylase, î±-glucosidase) and regulates hepatic glucose uptake. Biocatalysis and Agricultural Biotechnology, 2022, 43, 102411.	1.5	13
28	Microstructure, matrix interactions, and molecular structure are the key determinants of inherent glycemic potential in pearl millet (Pennisetum glaucum). Food Hydrocolloids, 2022, 127, 107481.	5.6	12
29	Molecular characterization, modeling, and docking analysis of late phytic acid biosynthesis pathway gene, inositol polyphosphate 6-/3-/5-kinase, a potential candidate for developing low phytate crops. 3 Biotech, 2018, 8, 344.	1.1	11
30	Gamma irradiation, an effective strategy to control the oxidative damage of soy proteins during storage and processing. Radiation Physics and Chemistry, 2020, 177, 109134.	1.4	11
31	Comparative Proteomic and Nutritional Composition Analysis of Independent Transgenic Pigeon Pea Seeds Harboring <i>cry1AcF</i> and <i>cry2Aa</i> Genes and Their Nontransgenic Counterparts. Journal of Agricultural and Food Chemistry, 2017, 65, 1395-1400.	2.4	10
32	Anthocyanin fingerprinting and dynamics in differentially pigmented exotic soybean genotypes using modified HPLC–DAD method. Journal of Food Measurement and Characterization, 2020, 14, 1966-1975.	1.6	9
33	Biodegradation of Gossypol by Mixed Fungal Cultures in Minimal Medium. Applied Biochemistry and Microbiology, 2018, 54, 301-308.	0.3	8
34	Refined glufosinate selection and its extent of exposure for improving the <i>Agrobacterium</i> -mediated transformation in Indian soybean (<i>Glycine) Tj ETQq0 0 0 rgB</i>	T/Oow. ⊚ rloc	k 1 0 Tf 50 137
35	Molecular modeling and in silico characterization of GmABCC5: a phytate transporter and potential target for low-phytate crops. 3 Biotech, 2018, 8, 54.	1.1	7
36	Polyamines, sonication and vacuum infiltration enhances the Agrobacterium-mediated transformation in watermelon (Citrullus lanatus Thunb.). South African Journal of Botany, 2020, 128, 333-338.	1.2	7

#	Article	IF	CITATIONS
37	Nutritional supremacy of pearl- and foxtail millets: assessing the nutrient density, protein stability and shelf-life of flours in millets and cereals for developing nutri-stable foods. Journal of Plant Biochemistry and Biotechnology, 2022, 31, 837-852.	0.9	7
38	Characterization and molecular modeling of Inositol 1,3,4 tris phosphate 5/6 kinase-2 from Glycine max (L) Merr.: comprehending its evolutionary conservancy at functional level. 3 Biotech, 2018, 8, 50.	1.1	6
39	Quality matrix reveals the potential of Chak-hao as a nutritional supplement: a comparative study of matrix components, antioxidants and physicochemical attributes. Journal of Food Measurement and Characterization, 2021, 15, 826-840.	1.6	6
40	Reduction in phytate levels and HCl-extractability of divalent cations in soybean (Glycine max L.) during soaking and germination. Indian Journal of Plant Physiology, 2015, 20, 44-49.	0.8	5
41	â€~AGRODATE': a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 294-304.	0.9	5
42	Expression profiling and in silico homology modeling of Inositol pentakisphosphate 2-kinase, a potential candidate gene for low phytate trait in soybean. 3 Biotech, 2020, 10, 268.	1.1	4
43	Molecular characterization of inositol pentakisphosphate 2-kinase (GmlPk1) from soybean and its expression pattern in the developing seeds. Indian Journal of Genetics and Plant Breeding, 2017, 77, 371.	0.2	3
44	Analysis of \hat{I}^3 -Tocopherol methyl transferase3 promoter activity and study of methylation patterns of the promoter and its gene body. Plant Physiology and Biochemistry, 2019, 144, 375-385.	2.8	2
45	GFP tagging based method to analyze the genome editing efficiency of CRISPR/Cas9-gRNAs through transient expression in N. benthamiana. Journal of Plant Biochemistry and Biotechnology, 2020, 29, 183-192.	0.9	2
46	A Novel Continuous Enzyme Coupled Colorimetric Assay for Phospholipase A2 and its Application in the Determination of Catalytic Activity of Oil-Body–Associated Oleosin Protein. Food Analytical Methods, 2022, 15, 2155-2162.	1.3	2
47	Functional characterization of GmITPK (myo-inositol: 1, 3, 4 tris phosphate 5/6 kinase) isoforms—â€~so different yet so similar'. Journal of Plant Biochemistry and Biotechnology, 2019, 28, 389-396.	0.9	1
48	Genetics of lodging resistance in chickpea (Cicer arietinum L). Euphytica, 2021, 217, 1.	0.6	1
49	Molecular mechanism of Begomovirus evolution and plant defense response., 2014,, 345-357.		0
50	A Simple and Accurate Reverse Phase HPLC-UV Method for Determination of Gossypol and Its Degradation Products. Indian Journal of Agricultural Biochemistry, 2017, 30, 27.	0.1	0
51	Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response. Biochemistry, 0, ,	0.8	0