
Zhenghang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6885487/publications.pdf Version: 2024-02-01

ΖΗΕΝΟΗΛΝΟ ΖΗΛΟ

#	Article	IF	CITATIONS
1	Tunable Selectivity for Electrochemical CO ₂ Reduction by Bimetallic Cu–Sn Catalysts: Elucidating the Roles of Cu and Sn. ACS Catalysis, 2021, 11, 11103-11108.	5.5	82
2	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	5.2	36
3	Energy density-enhancement mechanism and design principles for heteroatom-doped carbon supercapacitors. Nano Energy, 2020, 72, 104666.	8.2	65
4	Interpreting Tafel behavior of consecutive electrochemical reactions through combined thermodynamic and steady state microkinetic approaches. Energy and Environmental Science, 2020, 13, 622-634.	15.6	67
5	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	6.6	259
6	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	2.5	42
7	Rational design of efficient transition metal core–shell electrocatalysts for oxygen reduction and evolution reactions. RSC Advances, 2019, 9, 536-542.	1.7	5
8	Trends in Oxygen Electrocatalysis of <i>3 d</i> ‣ayered (Oxy)(Hydro)Oxides. ChemCatChem, 2019, 11, 3423-3431.	1.8	33
9	Prediction of Stable and Active (Oxy-Hydro) Oxide Nanoislands on Noble-Metal Supports for Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 2006-2013.	4.0	24
10	Guiding Principles for Designing Highly Efficient Metalâ€Free Carbon Catalysts. Advanced Materials, 2019, 31, e1805252.	11.1	110
11	Catalytic mechanism and design principles for heteroatom-doped graphene catalysts in dye-sensitized solar cells. Nano Energy, 2018, 49, 193-199.	8.2	38
12	Covalent Organic Framework Electrocatalysts for Clean Energy Conversion. Advanced Materials, 2018, 30, 1703646.	11.1	309
13	Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 2017, 29, 1606635.	11.1	167
14	In Situ Exfoliated, Edgeâ€Rich, Oxygenâ€Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Advanced Materials, 2017, 29, 1606207.	11.1	532
15	Interactions between Dopants in Dual-Doped Graphene Nanoribbons as Metal-Free Bifunctional Catalysts for Fuel Cell and Metal-Air Batteries. MRS Advances, 2016, 1, 421-425.	0.5	2
16	Synthesis, properties and applications of 3D carbon nanotube–graphene junctions. Journal Physics D: Applied Physics, 2016, 49, 443001.	1.3	18
17	Design Principles for Dual-Element-Doped Carbon Nanomaterials as Efficient Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions. ACS Catalysis, 2016, 6, 1553-1558.	5.5	179
18	Electron Transfer and Catalytic Mechanism of Organic Molecule-Adsorbed Graphene Nanoribbons as Efficient Catalysts for Oxygen Reduction and Evolution Reactions. Journal of Physical Chemistry C, 2016, 120, 2166-2175.	1.5	42

#	Article	IF	CITATIONS
19	Design Principles for Heteroatomâ€Doped Carbon Nanomaterials as Highly Efficient Catalysts for Fuel Cells and Metal–Air Batteries. Advanced Materials, 2015, 27, 6834-6840.	11.1	490
20	A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nature Nanotechnology, 2015, 10, 444-452.	15.6	2,782