Cedric Mariac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/688523/publications.pdf Version: 2024-02-01

CEDDIC MADIAC

#	Article	IF	CITATIONS
1	Speciesâ€level ichthyoplankton dynamics for 97 fishes in two major river basins of the Amazon using quantitative metabarcoding. Molecular Ecology, 2022, 31, 1627-1648.	3.9	17
2	Unveiling biogeographical patterns of the ichthyofauna in the Tuichi basin, a biodiversity hotspot in the Bolivian Amazon, using environmental DNA. PLoS ONE, 2022, 17, e0262357.	2.5	2
3	Adaptive potential of <i>Coffea canephora</i> from Uganda in response to climate change. Molecular Ecology, 2022, 31, 1800-1819.	3.9	7
4	Aquaporins are main contributors to root hydraulic conductivity in pearl millet [Pennisetum glaucum (L) R. Br.]. PLoS ONE, 2020, 15, e0233481.	2.5	18
5	Threatened fish spawning area revealed by specific metabarcoding identification of eggs and larvae in the Beni River, upper Amazon. Global Ecology and Conservation, 2020, 24, e01309.	2.1	9
6	Pearl millet genomic vulnerability to climate change in West Africa highlights the need for regional collaboration. Nature Communications, 2020, 11, 5274.	12.8	45
7	Abandonment of pearl millet cropping and homogenization of its diversity over a 40 year period in Senegal. PLoS ONE, 2020, 15, e0239123.	2.5	6
8	Transferability, development of simple sequence repeat (SSR) markers and application to the analysis of genetic diversity and population structure of the African fan palm (Borassus aethiopum Mart.) in Benin. BMC Genetics, 2020, 21, 145.	2.7	7
9	Microsatellite markers development for Indonesian nutmeg (Myristica fragrans Houtt.) and transferability to other Myristicaceae spp Molecular Biology Reports, 2020, 47, 4835-4840.	2.3	3
10	New microsatellite markers for Dacryodes edulis (Burseraceae), an indigenous fruit tree species from Central Africa. Molecular Biology Reports, 2020, 47, 2391-2396.	2.3	6
11	Preâ€Pleistocene origin of phylogeographical breaks in African rain forest trees: New insights from <i>Creenwayodendron</i> (Annonaceae) phylogenomics. Journal of Biogeography, 2019, 46, 212-223.	3.0	30
12	A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. Journal of Antimicrobial Chemotherapy, 2019, 74, 3231-3239.	3.0	7
13	Longâ€fragment targeted capture for longâ€read sequencing of plastomes. Applications in Plant Sciences, 2019, 7, e1243.	2.1	28
14	Yam genomics supports West Africa as a major cradle of crop domestication. Science Advances, 2019, 5, eaaw1947.	10.3	71
15	Wild crop relative populations hot-spots of diversity are hot-spots of introgression in the case of pearl millet. Genetic Resources and Crop Evolution, 2018, 65, 1187-1194.	1.6	2
16	Identification of a Hypervirulent Pathotype of <i>Rice yellow mottle virus</i> : A Threat to Genetic Resistance Deployment in West-Central Africa. Phytopathology, 2018, 108, 299-307.	2.2	25
17	Metabarcoding by capture using a single COI probe (MCSP) to identify and quantify fish species in ichthyoplankton swarms. PLoS ONE, 2018, 13, e0202976.	2.5	30
18	A western Sahara centre of domestication inferred from pearl millet genomes. Nature Ecology and Evolution, 2018, 2, 1377-1380.	7.8	78

CEDRIC MARIAC

#	Article	IF	CITATIONS
19	Human management and hybridization shape treegourd fruits in the Brazilian Amazon Basin. Evolutionary Applications, 2017, 10, 577-589.	3.1	9
20	Myosin XI is associated with fitness and adaptation to aridity in wild pearl millet. Heredity, 2017, 119, 88-94.	2.6	6
21	Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35, 969-976.	17.5	356
22	Diversity of Treegourd (Crescentia cujete) Suggests Introduction and Prehistoric Dispersal Routes into Amazonia. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	18
23	No excess of cis -regulatory variation associated with intra-specific selection in wild pearl millet () Tj ETQq1 1 0.	784 <u>31</u> 4 rg	BT <i>[</i> Overlock
24	DNA Metabarcoding of Amazonian Ichthyoplankton Swarms. PLoS ONE, 2017, 12, e0170009.	2.5	23
25	Spatial and Temporal Variation in Selection of Genes Associated with Pearl Millet Varietal Quantitative Traits In situ. Frontiers in Genetics, 2016, 7, 130.	2.3	2
26	Genotyping-by-Sequencing SNP Identification for Crops without a Reference Genome: Using Transcriptome Based Mapping as an Alternative Strategy. Frontiers in Plant Science, 2016, 7, 777.	3.6	21
27	Mutations in Rice yellow mottle virus Polyprotein P2a Involved in RYMV2 Gene Resistance Breakdown. Frontiers in Plant Science, 2016, 7, 1779.	3.6	38
28	Genome scan reveals selection acting on genes linked to stress response in wild pearl millet. Molecular Ecology, 2016, 25, 5500-5512.	3.9	30
29	Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity. Molecular Phylogenetics and Evolution, 2016, 105, 126-138.	2.7	45
30	Intraâ€individual polymorphism in chloroplasts from <scp>NGS</scp> data: where does it come from and how to handle it?. Molecular Ecology Resources, 2016, 16, 434-445.	4.8	62
31	Chloroplast Sequence of Treegourd (Crescentia cujete, Bignoniaceae) to Study Phylogeography and Domestication. Applications in Plant Sciences, 2016, 4, 1600048.	2.1	13
32	Genetic diversity and population structure in a collection of roselle (Hibiscus sabdariffaL.) from Niger. Plant Genetic Resources: Characterisation and Utilisation, 2014, 12, 207-214.	0.8	4
33	Genetic diversity, population structure and differentiation of rice species from Niger and their potential for rice genetic resources conservation and enhancement. Genetic Resources and Crop Evolution, 2014, 61, 199-213.	1.6	16
34	Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the APHYTOCHROME C gene in pearl millet. Theoretical and Applied Genetics, 2014, 127, 19-32.	3.6	27
35	Association studies including genotype by environment interactions: prospects and limits. BMC Genetics, 2014, 15, 3.	2.7	37
36	Costâ€effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Molecular Ecology Resources, 2014, 14, 1103-1113.	4.8	110

CEDRIC MARIAC

#	Article	IF	CITATIONS
37	Evolutionary History of Pearl Millet (Pennisetum glaucum [L.] R. Br.) and Selection on Flowering Genes since Its Domestication. Molecular Biology and Evolution, 2012, 29, 1199-1212.	8.9	48
38	Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Molecular Ecology, 2011, 20, 80-91.	3.9	48
39	Selection for Earlier Flowering Crop Associated with Climatic Variations in the Sahel. PLoS ONE, 2011, 6, e19563.	2.5	82
40	Spatio-temporal dynamics of genetic diversity in Sorghum bicolor in Niger. Theoretical and Applied Genetics, 2010, 120, 1301-1313.	3.6	33
41	Evidence of diploidy in the wild Amerindian yam, a putative progenitor of the endangered species <i>Dioscorea trifida</i> (Dioscoreaceae). Genome, 2010, 53, 371-383.	2.0	20
42	Changes in the diversity and geographic distribution of cultivated millet (Pennisetum glaucum (L.) R.) Tj ETQq0 0 Resources and Crop Evolution, 2009, 56, 223-236.	0 rgBT /0 1.6	verlock 10 Tf 70
43	Association Studies Identify Natural Variation at <i>PHYC</i> Linked to Flowering Time and Morphological Variation in Pearl Millet. Genetics, 2009, 182, 899-910.	2.9	80
44	Role of seed flow on the pattern and dynamics of pearl millet (Pennisetum glaucum [L.] R. Br.) genetic diversity assessed by AFLP markers: a study in south-western Niger. Genetica, 2008, 133, 167-178.	1.1	33
45	Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers. Theoretical and Applied Genetics, 2008, 116, 903-913.	3.6	73
46	Phylogeny and origin of pearl millet (Pennisetum glaucum [L.] R. Br) as revealed by microsatellite loci. Theoretical and Applied Genetics, 2008, 117, 489-497.	3.6	124
47	Genetic diversity analysis of yam cultivars (Dioscorea rotundata Poir.) in Benin using simple sequence repeat (SSR) markers. Plant Genetic Resources: Characterisation and Utilisation, 2007, 5, 71-81.	0.8	33
48	Isolation of 23 polymorphic microsatellite loci in the Neotropical palm Oenocarpus bataua Martius (Arecaceae). Molecular Ecology Notes, 2006, 7, 75-78.	1.7	11
49	Genetic Nature of Yams (Dioscorea sp.) Domesticated by Farmers in Benin (West Africa). Genetic Resources and Crop Evolution, 2006, 53, 121-130.	1.6	54
50	Genetic diversity and gene flow among pearl millet crop/weed complex: a case study. Theoretical and Applied Genetics, 2006, 113, 1003-1014.	3.6	47
51	Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theoretical and Applied Genetics, 2006, 114, 49-58.	3.6	125
52	Title is missing!. Euphytica, 2003, 133, 329-337.	1.2	11
53	Haplotype variation of cpDNA in the agamic grass complex Pennisetum section Brevivalvula (Poaceae). Heredity, 2001, 86, 537-544.	2.6	9
54	Chloroplast DNA Extraction from Herbaceous and Woody Plants for Direct Restriction Fragment Length Polymorphism Analysis. BioTechniques, 2000, 28, 110-113.	1.8	12