
Natasha Kyprianou Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Circadian Rhythms on the Development and Clinical Management of Genitourinary Cancers. Frontiers in Oncology, 2022, 12, 759153.	2.8	5
2	Prostate MRI percentage tumor involvement or "Plâ€RADS percent―as a predictor of adverse surgical pathology. Prostate, 2022, , .	2.3	0
3	Homeless Cells Escape Death and Deliver Lethal Cancer. Endocrinology, 2021, 162, .	2.8	0
4	Non-Coding RNAs Set a New Phenotypic Frontier in Prostate Cancer Metastasis and Resistance. International Journal of Molecular Sciences, 2021, 22, 2100.	4.1	13
5	Exosomes as A Next-Generation Diagnostic and Therapeutic Tool in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 10131.	4.1	22
6	Inflammation as a Driver of Prostate Cancer Metastasis and Therapeutic Resistance. Cancers, 2020, 12, 2984.	3.7	69
7	Molecular tracing of prostate cancer lethality. Oncogene, 2020, 39, 7225-7238.	5.9	10
8	The Resilient Child: Sex-Steroid Hormones and COVID-19 Incidence in Pediatric Patients. Journal of the Endocrine Society, 2020, 4, bvaa106.	0.2	10
9	Repurposing of α1-Adrenoceptor Antagonists: Impact in Renal Cancer. Cancers, 2020, 12, 2442.	3.7	7
10	Androgens modify therapeutic response to cabazitaxel in models of advanced prostate cancer. Prostate, 2020, 80, 926-937.	2.3	3
11	Integrated Therapeutic Targeting of the Prostate Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 183-198.	1.6	1
12	Adipose tissue: enabler of prostate cancer aggressive behavior. Translational Andrology and Urology, 2019, 8, S242-S245.	1.4	1
13	Predictive value of phenotypic signatures of bladder cancer response to cisplatin-based neoadjuvant chemotherapy. Urologic Oncology: Seminars and Original Investigations, 2019, 37, 572.e1-572.e11.	1.6	9
14	TGFâ€Î² receptor l inhibitor enhances response to enzalutamide in a preâ€clinical model of advanced prostate cancer. Prostate, 2019, 79, 31-43.	2.3	46
15	Prostate tumor neuroendocrine differentiation via EMT: The road less traveled. Asian Journal of Urology, 2019, 6, 82-90.	1.2	32
16	Impact of α-adrenoceptor antagonists on prostate cancer development, progression and prevention. American Journal of Clinical and Experimental Urology, 2019, 7, 46-60.	0.4	5
17	Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. American Journal of Clinical and Experimental Urology, 2019, 7, 188-202.	0.4	8
18	Cell death under epithelial–mesenchymal transition control in prostate cancer therapeutic response. International Journal of Urology, 2018, 25, 318-326.	1.0	8

#	Article	IF	CITATIONS
19	Profiling Prostate Cancer Therapeutic Resistance. International Journal of Molecular Sciences, 2018, 19, 904.	4.1	96
20	Personalization of prostate cancer therapy through phosphoproteomics. Nature Reviews Urology, 2018, 15, 483-497.	3.8	25
21	Profiles of Radioresistance Mechanisms in Prostate Cancer. Critical Reviews in Oncogenesis, 2018, 23, 39-67.	0.4	58
22	Nuclear spindles pave the way to metastasis. Oncotarget, 2018, 9, 12544-12545.	1.8	0
23	Epithelial-mesenchymal-transition regulators in prostate cancer: Androgens and beyond. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 84-90.	2.5	49
24	Mechanisms of Therapeutic Resistance in Prostate Cancer. Current Oncology Reports, 2017, 19, 13.	4.0	103
25	Aberrant TGF-Î ² Signaling Drives Castration-Resistant Prostate Cancer in a Male Mouse Model of Prostate Tumorigenesis. Endocrinology, 2017, 158, 1612-1622.	2.8	26
26	Predictive value of epithelialâ€mesenchymalâ€transition (EMT) signature and PARPâ€1 in prostate cancer radioresistance. Prostate, 2017, 77, 1583-1591.	2.3	36
27	Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells. Oncotarget, 2017, 8, 78507-78519.	1.8	21
28	Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Critical Reviews in Oncogenesis, 2016, 21, 155-168.	0.4	139
29	Pathophysiology of Castration-Resistant Prostate Cancer. , 2016, , 5-22.		1
30	Association of epithelial-mesenchymal transition and nuclear cofilin with advanced urothelial cancer. Human Pathology, 2016, 57, 68-77.	2.0	22
31	Multinucleation and Mesenchymal-to-Epithelial Transition Alleviate Resistance to Combined Cabazitaxel and Antiandrogen Therapy in Advanced Prostate Cancer. Cancer Research, 2016, 76, 912-926.	0.9	71
32	Mechanisms navigating the TGF-β pathway in prostate cancer. Asian Journal of Urology, 2015, 2, 11-18.	1.2	59
33	Exploitation of the Androgen Receptor to Overcome Taxane Resistance in Advanced Prostate Cancer. Advances in Cancer Research, 2015, 127, 123-158.	5.0	34
34	Nâ€ŧerminal targeting of androgen receptor variant enhances response of castration resistant prostate cancer to taxane chemotherapy. Molecular Oncology, 2015, 9, 628-639.	4.6	52
35	Epithelial–mesenchymal transition in prostatic disease. Future Oncology, 2015, 11, 3197-3206.	2.4	26
36	Therapeutic challenges in renal cell carcinoma. American Journal of Clinical and Experimental Urology, 2015, 3, 77-90.	0.4	9

#	Article	IF	CITATIONS
37	Novel Pharmacologic Targeting of Tight Junctions and Focal Adhesions in Prostate Cancer Cells. PLoS ONE, 2014, 9, e86238.	2.5	32
38	Cofilin Drives Cell-Invasive and Metastatic Responses to TGF-β in Prostate Cancer. Cancer Research, 2014, 74, 2362-2373.	0.9	90
39	The Fringe Benefits of Cloning Cancer. Science Translational Medicine, 2014, 6, 254fs36.	12.4	3
40	The Promise of Novel Molecular Markers in Bladder Cancer. International Journal of Molecular Sciences, 2014, 15, 23897-23908.	4.1	33
41	PARP-1 regulates epithelial-mesenchymal transition (EMT) in prostate tumorigenesis. Carcinogenesis, 2014, 35, 2592-2601.	2.8	58
42	Androgen Receptor as a Driver of Therapeutic Resistance in Advanced Prostate Cancer. International Journal of Biological Sciences, 2014, 10, 588-595.	6.4	87
43	Cytoskeleton targeting value in prostate cancer treatment. American Journal of Clinical and Experimental Urology, 2014, 2, 15-26.	0.4	27
44	Targeting caspases in cancer therapeutics. Biological Chemistry, 2013, 394, 831-843.	2.5	134
45	Emerging therapeutics targeting castration-resistant prostate cancer: the AR-mageddon of tumor epithelial–mesenchymal transition. Expert Review of Endocrinology and Metabolism, 2013, 8, 403-416.	2.4	Ο
46	Expression patterns of epithelial–mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU International, 2013, 111, 6-7.	2.5	2
47	Proteasomal regulation of caspase-8 in cancer cell apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 766-776.	4.9	16
48	p27 Stands-Up-To-Cancer: UPS Nuclear Service Stops. Endocrinology, 2013, 154, 3970-3973.	2.8	0
49	Molecular Signatures in Urologic Tumors. International Journal of Molecular Sciences, 2013, 14, 18421-18436.	4.1	3
50	Androgen Receptor Signaling Interactions Control Epithelial–Mesenchymal Transition (EMT) in Prostate Cancer Progression. , 2013, , 227-255.		3
51	Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression. Translational Andrology and Urology, 2013, 2, 202-211.	1.4	93
52	Therapeutic value of quinazoline-based compounds in prostate cancer. Anticancer Research, 2013, 33, 4695-700.	1.1	26
53	Modeling Prostate Cancer in Mice: Limitations and Opportunities. Journal of Andrology, 2012, 33, 133-144.	2.0	42
54	Emerging biomarkers of prostate cancer (Review). Oncology Reports, 2012, 28, 409-417.	2.6	35

#	Article	IF	CITATIONS
55	EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer. Prostate, 2012, 72, 72-81.	2.3	18
56	Significance of Talin in Cancer Progression and Metastasis. International Review of Cell and Molecular Biology, 2011, 289, 117-147.	3.2	69
57	Anoikis Disruption of Focal Adhesion-Akt Signaling Impairs Renal Cell Carcinoma. European Urology, 2011, 59, 734-744.	1.9	36
58	Advances in the design and synthesis of prazosin derivatives over the last ten years. Expert Opinion on Therapeutic Targets, 2011, 15, 1405-1418.	3.4	27
59	Gene fusions find an ERG-way to tumor inflammation. Cancer Biology and Therapy, 2011, 11, 418-420.	3.4	6
60	Androgen regulation of epithelial–mesenchymal transition in prostate tumorigenesis. Expert Review of Endocrinology and Metabolism, 2011, 6, 469-482.	2.4	44
61	Prohibitin regulates TGFâ€Î² induced apoptosis as a downstream effector of smadâ€dependent and â€independent signaling. Prostate, 2010, 70, 17-26.	2.3	44
62	Tubulin-Targeting Chemotherapy Impairs Androgen Receptor Activity in Prostate Cancer. Cancer Research, 2010, 70, 7992-8002.	0.9	313
63	Dysregulation of the Mitogen Granulin in Human Cancer through the miR-15/107 microRNA Gene Group. Cancer Research, 2010, 70, 9137-9142.	0.9	50
64	Role of androgens and the androgen receptor in epithelialâ€mesenchymal transition and invasion of prostate cancer cells. FASEB Journal, 2010, 24, 769-777.	0.5	198
65	Talin1 Promotes Tumor Invasion and Metastasis via Focal Adhesion Signaling and Anoikis Resistance. Cancer Research, 2010, 70, 1885-1895.	0.9	182
66	ASK-ing EMT not to spread cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2731-2732.	7.1	14
67	Live Free or Die. American Journal of Pathology, 2010, 177, 1044-1052.	3.8	85
68	Targeting anoikis resistance in prostate cancer metastasis. Molecular Aspects of Medicine, 2010, 31, 205-214.	6.4	146
69	Talin1 Promotes Prostate Cancer Invasion and Metastasis via AKT Signaling and Anoikis Resistance. Nature Precedings, 2009, , .	0.1	0
70	Dysfunctional Transforming Growth Factor-Î ² Receptor II Accelerates Prostate Tumorigenesis in the TRAMP Mouse Model. Cancer Research, 2009, 69, 7366-7374.	0.9	54
71	Apoptosis induction by doxazosin and other quinazoline α1-adrenoceptor antagonists: a new mechanism for cancer treatment?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2009, 380, 473-477.	3.0	20
72	Targeting TGF-β in prostate cancer: therapeutic possibilities during tumor progression. Expert Opinion on Therapeutic Targets, 2009, 13, 227-234.	3.4	90

NATASHA KYPRIANOU MBBS

#	Article	IF	CITATIONS
73	TGF-β signaling and androgen receptor status determine apoptotic cross-talk in human prostate cancer cells. Prostate, 2008, 68, 287-295.	2.3	46
74	Intracellular death platform stepsâ€in: Targeting prostate tumors via endoplasmic reticulum (ER) apoptosis. Prostate, 2008, 68, 1615-1623.	2.3	18
75	Targeting vasculature in urologic tumors: Mechanistic and therapeutic significance. Journal of Cellular Biochemistry, 2008, 103, 691-708.	2.6	36
76	Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocrine-Related Cancer, 2008, 15, 841-849.	3.1	234
77	Decreased risk of bladder cancer in men treated with quinazoline-based α1-adrenoceptor antagonists. Gene Therapy and Molecular Biology, 2008, 12, 253-258.	1.3	10
78	Novel Quinazoline-Based Compounds Impair Prostate Tumorigenesis by Targeting Tumor Vascularity. Cancer Research, 2007, 67, 11344-11352.	0.9	49
79	Effect of α1-Adrenoceptor Antagonist Exposure on Prostate Cancer Incidence: An Observational Cohort Study. Journal of Urology, 2007, 178, 2176-2180.	0.4	67
80	Finasteride targets prostate vascularity by inducing apoptosis and inhibiting cell adhesion of benign and malignant prostate cells. Prostate, 2006, 66, 1194-1202.	2.3	25
81	Growth factor signalling in prostatic growth: significance in tumour development and therapeutic targeting. British Journal of Pharmacology, 2006, 147, S144-S152.	5.4	64
82	Apoptosis evasion: The role of survival pathways in prostate cancer progression and therapeutic resistance. Journal of Cellular Biochemistry, 2006, 97, 18-32.	2.6	110
83	Prohibitin and Cofilin Are Intracellular Effectors of Transforming Growth Factor Î ² Signaling in Human Prostate Cancer Cells. Cancer Research, 2006, 66, 8640-8647.	0.9	97
84	Doxazosin Induces Apoptosis of Benign and Malignant Prostate Cells via a Death Receptor–Mediated Pathway. Cancer Research, 2006, 66, 464-472.	0.9	84
85	Maspin sensitizes prostate cancer cells to doxazosin-induced apoptosis. Oncogene, 2005, 24, 5375-5383.	5.9	38
86	Doxazosin inhibits human vascular endothelial cell adhesion, migration, and invasion. Journal of Cellular Biochemistry, 2005, 94, 374-388.	2.6	56
87	Anoikis and Survival Connections in the Tumor Microenvironment: Is There a Role in Prostate Cancer Metastasis?: Figure 1 Cancer Research, 2005, 65, 11230-11235.	0.9	126
88	Effect of terazosin on tissue vascularity and apoptosis in transitional cell carcinoma of bladder. Urology, 2005, 65, 1019-1023.	1.0	13
89	Transforming Growth Factor Beta and Prostate Cancer. , 2005, 126, 157-173.		50
90	Novel Targeting of Apoptosis Pathways for Prostate Cancer Therapy. Current Cancer Drug Targets, 2004, 4, 85-95.	1.6	27

6

#	Article	IF	CITATIONS
91	The role of α-blockers in the management of prostate cancer. Expert Opinion on Pharmacotherapy, 2004, 5, 1279-1285.	1.8	32
92	Apoptotic impact of α ₁ â€blockers on prostate cancer growth: A myth or an inviting reality?. Prostate, 2004, 59, 91-100.	2.3	37
93	Effect of permixon on human prostate cell growth: Lack of apoptotic action. Prostate, 2004, 61, 73-80.	2.3	31
94	Pharmacological Exploitation of the α1-Adrenoreceptor Antagonist Doxazosin to Develop a Novel Class of Antitumor Agents That Block Intracellular Protein Kinase B/Akt Activation. Journal of Medicinal Chemistry, 2004, 47, 4453-4462.	6.4	59
95	Apoptosis incidence and protein expression of p53, TGF-β receptor II, p27Kip1, and Smad4 in benign, premalignant, and malignant human prostate1 1Accepted for publication 0, 2003 Human Pathology, 2004, 35, 290-297.	2.0	57
96	Anoikis Induction by Quinazoline Based α1-Adrenoceptor Antagonists in Prostate Cancer Cells: Antagonistic Effect of Bcl-2. Journal of Urology, 2003, 169, 1150-1156.	0.4	50
97	Doxazosin and Terazosin Suppress Prostate Growth by Inducing Apoptosis: Clinical Significance. Journal of Urology, 2003, 169, 1520-1525.	0.4	113
98	Apoptosis and Cell Cycle Deregulation in Prostate Cancer. , 2003, , 511-549.		0
99	bcl-2 antagonizes the combined apoptotic effect of transforming growth factor-? and dihydrotestosterone in prostate cancer cells. Prostate, 2002, 53, 133-142.	2.3	26
100	Quinazoline-derived alpha1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an alpha1-adrenoceptor-independent action. Cancer Research, 2002, 62, 597-602.	0.9	99
101	Alpha1-adrenoceptor antagonists radiosensitize prostate cancer cells via apoptosis induction. Anticancer Research, 2002, 22, 1673-9.	1.1	9
102	Sequencing hormonal ablation and radiotherapy in prostate cancer: a molecular and therapeutic prespective (Review). Oncology Reports, 2002, 9, 1151-6.	2.6	7
103	POTENTIN VITROANTICANCER ACTIVITIES OF RING-EXPANDED ("FATâ€) NUCLEOSIDES CONTAINING THE IMIDAZO[4,5-E][1,3]DIAZEPINE RING SYSTEM. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1043-1045.	1.1	8
104	Reduction of human prostate tumor vascularity by the ?1-adrenoceptor antagonist terazosin. Prostate, 2001, 48, 71-78.	2.3	30
105	Combined effect of terazosin and finasteride on apoptosis, cell proliferation, and transforming growth factor-? expression in benign prostatic hyperplasia. Prostate, 2001, 46, 45-51.	2.3	71
106	Dihydrotestosterone Enhances Transforming Growth Factor-β-Induced Apoptosis in Hormone-Sensitive Prostate Cancer Cells*. Endocrinology, 2001, 142, 2419-2426.	2.8	53
107	Dihydrotestosterone Enhances Transforming Growth Factor-Â-Induced Apoptosis in Hormone-Sensitive Prostate Cancer Cells. Endocrinology, 2001, 142, 2419-2426.	2.8	24
108	Racial differences in prostate cancer growth: Apoptosis and cell proliferation in Caucasian and African-American patients. , 2000, 42, 130-136.		37

#	Article	IF	CITATIONS
109	Effects of Alpha1-adrenoceptor (?1-AR) antagonists on cell proliferation and apoptosis in the prostate: Therapeutic implications in prostatic disease. Prostate, 2000, 45, 42-46.	2.3	46
110	Induction of apoptosis in the prostate by α1-adrenoceptor antagonists: A novel effect of "Old―drugs. Current Urology Reports, 2000, 1, 89-96.	2.2	15
111	Apoptosis in prostate carcinogenesis. Cell and Tissue Research, 2000, 301, 153-162.	2.9	96
112	Induction of Prostate Apoptosis in Response to α1â€Adrenoceptor Antagonists: Therapeutic Significance in Benign Prostatic Hyperplasia and Prostate Cancer. Prostate Journal, 1999, 1, 73-81.	0.2	0
113	alpha _{1-ADRENOCEPTOR} ANTAGONISTS TERAZOSIN AND DOXAZOSIN INDUCE PROSTATE APOPTOSIS WITHOUT AFFECTING CELL PROLIFERATION IN PATIENTS WITH BENIGN PROSTATIC HYPERPLASIA. Journal of Urology, 1999, 161, 2002-2008.	0.4	127
114	Loss of Cell Cycle Regulators p27Kip1 and Cyclin E in Transitional Cell Carcinoma of the Bladder Correlates with Tumor Grade and Patient Survival. American Journal of Pathology, 1999, 155, 1129-1136.	3.8	93
115	INDUCTION OF PROSTATE APOPTOSIS BY DOXAZOSIN IN BENIGN PROSTATIC HYPERPLASIA. Journal of Urology, 1998, 159, 1810-1815.	0.4	139
116	Transient tyrosine phosphorylation of p34cdc2 is an early event in radiation-induced apoptosis of prostate cancer cells. , 1997, 32, 266-271.		7
117	bcl-2 over-expression delays radiation-induced apoptosis without affecting the clonogenic survival of human prostate cancer cells. , 1997, 70, 341-348.		127
118	Down-regulation of protein and mRNA expression for transforming growth factor-β (TGF-β1) type I and type II receptors in human prostate cancer. International Journal of Cancer, 1997, 71, 573-579.	5.1	110
119	Downâ€regulation of protein and mRNA expression for transforming growth factorâ€Ĥ2 (TGFâ€Ĥ21) type I and type II receptors in human prostate cancer. International Journal of Cancer, 1997, 71, 573-579.	5.1	2
120	Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Human Pathology, 1996, 27, 668-675.	2.0	185
121	Incidence of apoptosis and cell proliferation in prostate cancer: Relationship with TGF-β1 and bcl-2 expression. , 1996, 69, 357-363.		94
122	Partial growth suppression of human prostate cancer cells by the Krev-1 suppressor gene. Prostate, 1994, 25, 177-188.	2.3	18
123	Combined Antitumor Effect of Suramin Plus Irradiation in Human Prostate Cancer Cells: The Role of Apoptosis. Journal of Urology, 1993, 150, 1526-1532.	0.4	46
124	Expression of Transforming Growth Factor-β in the Rat Ventral Prostate during Castration-Induced Programmed Cell Death. Molecular Endocrinology, 1989, 3, 1515-1522.	3.7	405
125	Activation of Programmed Cell Death in the Rat Ventral Prostate after Castration*. Endocrinology, 1988, 122, 552-562.	2.8	651
126	Identification of a Cellular Receptor for Transforming Growth Factor-Î ² in Rat Ventral Prostate and Its Negative Regulation by Androgens*. Endocrinology, 1988, 123, 2124-2131.	2.8	177