Heber C Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884530/publications.pdf

Version: 2024-02-01

185998 243296 110 2,286 28 44 citations h-index g-index papers 129 129 129 1902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ErbB4 alternative splicing mediates fetal mouse alveolar type II cell differentiation in vitro. Pediatric Research, 2022, , .	1.1	1
2	Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. Journal of Asthma and Allergy, 2021, Volume 14, 539-556.	1.5	9
3	Expressed Breast Milk Analysis: Role of Individualized Protein Fortification to Avoid Protein Deficit After Preterm Birth and Improve Infant Outcomes. Frontiers in Pediatrics, 2021, 9, 652038.	0.9	3
4	Growth factors in the therapy of bronchopulmonary dyplasia. , 2020, , 149-168.		0
5	CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury. Journal of Cell Communication and Signaling, 2018, 12, 217-229.	1.8	15
6	Bioluminescence and second harmonic generation imaging reveal dynamic changes in the inflammatory and collagen landscape in early osteoarthritis. Laboratory Investigation, 2018, 98, 656-669.	1.7	28
7	A Pathogenic Relationship of Bronchopulmonary Dysplasia and Retinopathy of Prematurity? A Review of Angiogenic Mediators in Both Diseases. Frontiers in Pediatrics, 2018, 6, 125.	0.9	30
8	A purinergic P2Y6 receptor agonist prodrug modulates airway inflammation, remodeling, and hyperreactivity in a mouse model of asthma. Journal of Asthma and Allergy, 2018, Volume 11, 159-171.	1.5	15
9	Response to "Commentary on identity of fibroblast pneumocyte factor: rat vs. human― Pediatric Research, 2017, 82, 6-7.	1.1	О
10	Response to Torday. Pediatric Research, 2017, 82, 3-3.	1.1	1
10	Response to Torday. Pediatric Research, 2017, 82, 3-3. Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39.	0.8	1
	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner		
11	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39. The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles. Frontiers in Pediatrics, 2017,	0.8	12
11 12	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39. The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles. Frontiers in Pediatrics, 2017, 5, 45. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Frontiers in	0.8	7
11 12 13	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39. The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles. Frontiers in Pediatrics, 2017, 5, 45. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Frontiers in Bioscience - Elite, 2016, 8, 370-377.	0.8	12 7 3
11 12 13	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39. The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles. Frontiers in Pediatrics, 2017, 5, 45. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Frontiers in Bioscience - Elite, 2016, 8, 370-377. What is the identity of fibroblast-pneumocyte factor?. Pediatric Research, 2016, 80, 768-776.	0.8 0.9 0.9	12 7 3
11 12 13 14	Pigment Epithelium-Derived Factor (PEDF) mediates cartilage matrix loss in an age-dependent manner under inflammatory conditions. BMC Musculoskeletal Disorders, 2017, 18, 39. The Molecular Apgar Score: A Key to Unlocking Evolutionary Principles. Frontiers in Pediatrics, 2017, 5, 45. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Frontiers in Bioscience - Elite, 2016, 8, 370-377. What is the identity of fibroblast-pneumocyte factor? Pediatric Research, 2016, 80, 768-776. IgE mediates broncho-vascular remodeling after neonatal sensitization in mice. Frontiers in Bioscience - Elite, 2016, 8, 370-377. Pigment Epithelium–Derived Factor Mediates Impaired Lung Vascular Development in Neonatal	0.8 0.9 0.9 1.1	12 7 3 6

#	Article	IF	CITATIONS
19	Oxygen differentially affects the hox proteins Hoxb5 and Hoxa5 altering airway branching and lung vascular formation. Journal of Cell Communication and Signaling, 2014, 8, 231-244.	1.8	3
20	Dihydrotestosterone Potentiates EGF-Induced ERK Activation by Inducing SRC in Fetal Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 114-124.	1.4	7
21	Reply. Journal of Allergy and Clinical Immunology, 2014, 133, 1776-1777.	1.5	1
22	Dissociated presenilin-1 and TACE processing of ErbB4 in lung alveolar type II cell differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 797-805.	1.9	6
23	Asthma across the ages: Knowledge gaps in childhood asthma. Journal of Allergy and Clinical Immunology, 2014, 133, 3-13.	1.5	78
24	Neuregulin-ErbB4 signaling in the developing lung alveolus: a brief review. Journal of Cell Communication and Signaling, 2014, 8, 105-111.	1.8	9
25	Expressed breast milk analysis: an innovative tool in optimizing protein energy ratio and avoiding protein deficit after preterm birth (635.3). FASEB Journal, 2014, 28, 635.3.	0.2	0
26	miRNA regulated pathways in late stage murine lung development. BMC Developmental Biology, 2013, 13, 13.	2.1	46
27	Regulatory Interactions between Androgens, Hoxb5, and TGF <i>\hat{l}^2</i> Signaling in Murine Lung Development. BioMed Research International, 2013, 2013, 1-12.	0.9	17
28	MiR-221 and miR-130a Regulate Lung Airway and Vascular Development. PLoS ONE, 2013, 8, e55911.	1,1	46
29	Vascular Remodeling In Asthma: Mechanism Of Expression Of Vascular Endothelial Growth Factor (VEGF)., 2012,,.		0
30	Opposing Roles Of MiR-221 And MiR-130a In Neovascularization During Lung Branching Morphogenesis. , 2012, , .		0
31	Dihydrotestosterone Activates Src To Increase ErbB-1-Mediated Erk Activation In Fetal Lung Fibroblasts. , 2012, , .		0
32	Growth Factor Stimulation Induces Shc Nuclear Localization Independently Of Receptor Translocation. , $2011, \ldots$		0
33	MiR-221 And MiR-130 In Developing Lung: Role In Hox Gene Regulation In Vascular And Epithelial Morphogenesis., 2011,,.		0
34	ERBB4 Drives The Age-Related Type II Cell EMT Behavior. , 2011, , .		0
35	Presenilin-1 processing of ErbB4 in fetal type II cells is necessary for control of fetal lung maturation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 480-491.	1.9	19
36	A New Compass for Activin Researchâ€"A Triumph for Systems Biology. Endocrinology, 2011, 152, 3587-3588.	1.4	0

#	Article	IF	CITATIONS
37	Homeobox Genes., 2011, , 78-93.		0
38	Presenilin-1 Is Crucial For Surfactant Protein B And C MRNA Expression In Murine MLE-12 Cells., 2010, , .		0
39	ErbB4 regulates the timely progression of late fetal lung development. Biochimica Et Biophysica Acta - Molecular Cell Research, 2010, 1803, 832-839.	1.9	31
40	Androgen Inhibits TACE-Mediated Components Of Fetal Type II Cell Surfactant Synthesis., 2010,,.		0
41	Modest Oxygen (FiO2 0.4) Effects On Hox Protein Expression Correlate With Altered Airway And Blood Vessel Formation In Developing Mouse Lung., 2010,,.		O
42	Aberrant cell adhesion molecule expression in human bronchopulmonary sequestration and congenital cystic adenomatoid malformation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L143-L152.	1.3	26
43	ErbB4 REGULATES SURFACTANT SYNTHESIS AND PROLIFERATION IN ADULT RAT PULMONARY EPITHELIAL CELLS. Experimental Lung Research, 2009, 35, 29-47.	0.5	16
44	The role of ILâ€6 and ILâ€11 in hyperoxic injury in developing lung. Pediatric Pulmonology, 2008, 43, 297-304.	1.0	10
45	Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L584-L592.	1.3	59
46	ErbB4 regulates fetal surfactant phospholipid synthesis in primary fetal rat type II cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L429-L435.	1.3	26
47	The ErbB4 receptor in fetal rat lung fibroblasts and epithelial type II cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 737-747.	1.8	18
48	EXPRESSION OF SPECIFIC PROTEIN KINASE C (PKC) ISOFORMS AND LIGAND-SPECIFIC ACTIVATION OF PKCα IN LATE GESTATION FETAL LUNG. Experimental Lung Research, 2007, 33, 185-196.	0.5	6
49	HoxB-5 down regulation alters Tenascin-C, FGF10 AND HoxB gene expression patterns in pseudoglandular period fetal mouse lung. Frontiers in Bioscience - Landmark, 2007, 12, 860.	3.0	18
50	ErbB receptor dimerization, localization, and co-localization in mouse lung type II epithelial cells. Pediatric Pulmonology, 2006, 41, 1205-1212.	1.0	34
51	Insulin-like Growth Factor-I Signaling Mechanisms, Type I Collagen and Alpha Smooth Muscle Actin in Human Fetal Lung Fibroblasts. Pediatric Research, 2006, 60, 389-394.	1.1	62
52	Modulation of IGF-Binding Protein-2 and -3 in Hyperoxic Injury in Developing Rat Lung. Pediatric Research, 2005, 58, 222-228.	1.1	14
53	Insulin-like growth factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) expression in human lung in RDS and BPD. Pediatric Pulmonology, 2004, 37, 128-136.	1.0	65
54	Homeobox Genes. , 2004, , 65-71.		0

#	Article	IF	Citations
55	Expression of Hoxb-5 during human lung development and in congenital lung malformations. Birth Defects Research Part A: Clinical and Molecular Teratology, 2003, 67, 550-556.	1.6	100
56	Clinical Dilemma in Triplet Pregnancy: When Is It Appropriate to Intervene for a Jeopardized Fetus?. Journal of Perinatology, 2003, 23, 229-234.	0.9	0
57	Thyroid hormone affects distal airway formation during the late pseudoglandular period of mouse lung development. Molecular Genetics and Metabolism, 2003, 80, 242-254.	0.5	7
58	Effect of Exogenous Surfactant on the Development of Surfactant Synthesis in Premature Rabbit Lung. Pediatric Research, 2003, 53, 671-678.	1.1	10
59	Role of Neuregulin- $1\hat{l}^2$ in the Developing Lung. American Journal of Respiratory and Critical Care Medicine, 2003, 167, 1711-1716.	2.5	67
60	Cell-specific and developmental expression of phospholipase $C \cdot \hat{l}^3$ and diacylglycerol in fetal lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 284, L808-L816.	1.3	8
61	Thyroid hormone affects embryonic mouse lung branching morphogenesis and cellular differentiation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L359-L369.	1.3	33
62	Mesenchymal Nuclear Transcription Factors in Nitrofen-Induced Hypoplastic Lung. Journal of Surgical Research, 2002, 108, 203-211.	0.8	18
63	Regulation of Cell Proliferation by Insulin-like Growth Factor 1 in Hyperoxia-Exposed Neonatal Rat Lung. Molecular Genetics and Metabolism, 2002, 75, 265-275.	0.5	26
64	Effects of epidermal growth factor (EGF) on the development of EGF-receptor (EGF-R) binding in fetal rabbit lung organ culture., 2000, 29, 27-33.		7
65	Effects of early inhaled beclomethasone therapy on tracheal aspirate inflammatory mediators IL-8 and IL-1ra in ventilated preterm infants at risk for bronchopulmonary dysplasia. Pediatric Pulmonology, 2000, 30, 275-281.	1.0	39
66	Pulse oximetry: What's normal in the newborn nursery?. Pediatric Pulmonology, 2000, 30, 406-412.	1.0	60
67	Hoxa-5 in mouse developing lung: cell-specific expression and retinoic acid regulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L863-L871.	1.3	22
68	Androgen Regulation of Signaling Pathways in Late Fetal Mouse Lung Development1. Endocrinology, 2000, 141, 2923-2929.	1.4	59
69	Hoxb-5 control of early airway formation during branching morphogenesis in the developing mouse lung. Biochimica Et Biophysica Acta - General Subjects, 2000, 1475, 337-345.	1.1	40
70	Association of bronchopulmonary sequestration with expression of the homeobox protein Hoxb-5. Journal of Pediatric Surgery, 2000, 35, 1817-1819.	0.8	25
71	Dihydrotestosterone Stimulates Branching Morphogenesis, Cell Proliferation, and Programmed Cell Death in Mouse Embryonic Lung Explants. Pediatric Research, 2000, 47, 481-491.	1.1	51
72	Cell-Specific and Developmental Expression of Phospholipase \hat{Cl}^3 (PLC \hat{l}^3) in the Fetal Lung. Pediatric Research, 1999, 45, 59A-59A.	1.1	0

#	Article	IF	CITATIONS
73	Mechanism of Cell-Specific Stimulation of Hoxa-5 Gene Expression by Retinoic Acid in Fetal Mouse Lung Fibroblasts and MLE12 Cells. Pediatric Research, 1999, 45, 55A-55A.	1.1	0
74	Oxygen-Induced Fibroblast Proliferation in Human Fetal Lung Cells Is Mediated by Insulin-Like Growth Factor-1. Pediatric Research, 1999, 45, 49A-49A.	1.1	0
75	Thyroid Hormon Affects Embryonic Mouse Lung Branching Morphogenesis and Cellular Differentiation. Pediatric Research, 1999, 45, 47A-47A.	1.1	0
76	Expression and Activity of Epidermal Growth Factor Receptor in Late Fetal Rat Lung Is Cell- and Sex-Specific. Experimental Cell Research, 1998, 239, 69-81.	1.2	25
77	Regulation of the Epidermal Growth Factor Receptor in Fetal Rat Lung Fibroblasts during Late Gestation*. Endocrinology, 1998, 139, 1671-1677.	1.4	27
78	Transforming Growth Factor Beta 1 Binding and Receptor Kinetics in Fetal Mouse Lung Fibroblasts. Experimental Biology and Medicine, 1998, 218, 51-61.	1.1	6
79	Differential Effects in Vivo of Thyroid Hormone on the Expression of Surfactant Phospholipid, Surfactant Protein mRNA and Antioxidant Enzyme mRNA in Fetal Rat Lung. Experimental Lung Research, 1998, 24, 641-657.	0.5	26
80	Growth factors and dexamethasone regulate Hoxb5 protein in cultured murine fetal lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 274, L610-L620.	1.3	23
81	Association of Pulmonary Surfactant Protein A (SP-A) Gene and Respiratory Distress Syndrome: Interaction with SP-B. Pediatric Research, 1998, 43, 169-177.	1.1	100
82	Control of Proximal Airway Branching in Developing Mouse Lung Morphogenesis• 318. Pediatric Research, 1998, 43, 57-57.	1.1	0
83	Cell-Specific Regulation of Hoxa-5 by Retinoic Acid in Developing Mouse Lung†277. Pediatric Research, 1998, 43, 50-50.	1.1	0
84	Neonatal outcome of very premature infants from multiple and singleton gestations. American Journal of Obstetrics and Gynecology, 1997, 177, 653-659.	0.7	72
85	Growth Factor Control of Growth and Epithelial Differentiation in Embryonic Lungs. Biochemical and Molecular Medicine, 1997, 60, 38-48.	1.5	37
86	Hoxb-5 expression in the developing mouse lung suggests a role in branching morphogenesis and epithelial cell fate. Histochemistry and Cell Biology, 1997, 108, 495-504.	0.8	64
87	Hoxa5 in Developing Lung: Protein Expression and CellSpecific Regulation by Retinoic Acid 270. Pediatric Research, 1997, 41, 47-47.	1.1	0
88	SPATIAL AND TEMPORAL EXPRESSION OF HOX PROTEINS IN THE DEVELOPING SWISS WEBSTER MOUSE SMALL INTESTINE. †242. Pediatric Research, 1997, 41, 43-43.	1.1	0
89	Elevated endothelin levels are associated with increased placental resistance. American Journal of Obstetrics and Gynecology, 1996, 174, 1599-1604.	0.7	30
90	DIHYDROTESTOSTERONE (DHT) STIMULATES BRANCHING MORPHOGENESIS IN EMBRYONIC LUNG EXPLANTS. â-361. Pediatric Research, 1996, 39, 63-63.	1.1	0

#	Article	IF	CITATIONS
91	DIFFERENTIAL INFLUENCE OF EGF, TGFβ1, DHT, AND CORTISOL ON EGF-RECEPTOR(EGF-R) BINDING ACTIVITY IN LATE GESTATION FETAL RAT LUNG FIBROBLASTS.†335. Pediatric Research, 1996, 39, 58-58.	1.1	O
92	Early Minimal Feedings Promote Growth in Critically III Premature Infants. Neonatology, 1995, 67, 172-181.	0.9	86
93	DEVELOPMENTAL LOCALIZATION OF 2.1 PROTEIN IN MOUSE FETAL LUNG SUGGESTS A ROLE IN DETERMINATION OF CELL FATE. Pediatric Research, 1994, 35, 284-284.	1.1	2
94	Testosterone Regulation of Sex Differences in Fetal Lung Development. Experimental Biology and Medicine, 1992, 199, 446-452.	1.1	37
95	DEVELOPMENTAL REGULATION OF HOX GENE EXPRESSION IN FETAL MOUSE LUNG. Pediatric Research, 1992, 32, 621-621.	1.1	O
96	Development of fibroblast-type-II cell communications in fetal rabbit lung organ culture. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1175, 95-99.	1.9	21
97	Sex-specific differences in rabbit fetal lung maturation in response to epidermal growth factor. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1133, 121-126.	1.9	14
98	Coordination of growth and differentiation in the fetal lung. Experimental Cell Research, 1990, 188, 89-96.	1.2	42
99	Lack of Sex Differences in Antioxidant Enzyme Development in the Fetal Rabbit Lung. Pediatric Research, 1989, 26, 16-19.	1.1	9
100	Delayed Lung Maturation in the Macrosomic Offspring of Genetically Determined Diabetic (db/+) Mice1. Pediatric Research, 1989, 25, 173-179.	1.1	23
101	Epidermal growth factor influences the developmental clock regulating maturation of the fetal lung fibroblast. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1012, 201-206.	1.9	43
102	Uptake of the 35 kDa major surfactant apoprotein (SP-A) by neonatal rabbit lung tissue. Lipids and Lipid Metabolism, 1989, 1002, 1-7.	2.6	5
103	Failure to Detect a Stimulatory Effect of Estradiol- $17\hat{l}^2$ on Ovine Fetal Lung Maturation. Pediatric Research, 1987, 22, 145-149.	1.1	10
104	Sex Differences in Avian Embryo Pulmonary Surfactant Production: Evidence for Sex Chromosome Involvement*. Endocrinology, 1985, 117, 31-37.	1.4	24
105	Use of ultrasonography for diagnosis and management of neonatal brain abscess. Pediatric Infectious Disease Journal, 1983, 2, 460-461.	1.1	1
106	Dihydrotestosterone Inhibits Fetal Rabbit Pulmonary Surfactant Production. Journal of Clinical Investigation, 1982, 69, 611-616.	3.9	92
107	Sex Differences in Fetal Rabbit Pulmonary Surfactant Production. Pediatric Research, 1981, 15, 1245-1247.	1.1	79
108	Surfactant Phospholipid Ontogeny in Fetal Rabbit Lung Lavage and Amniotic Fluid. Neonatology, 1981, 39, 266-271.	0.9	15

#	Article	IF	CITATIONS
109	A Simple Monitoring Console for Use in Transporting Newborns. Clinical Pediatrics, 1977, 16, 333-334.	0.4	O
110	Sex Differences in Fetal Lung Development Biology, Etiology, and Evolutionary Significance. , 0, , 141-159.		3