Fei Sha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884502/publications.pdf

Version: 2024-02-01

		759055	642610
32	545	12	23
papers	citations	h-index	g-index
32	32	32	285
all docs	docs citations	times ranked	citing authors

FEI SUA

#	Article	lF	CITATIONS
1	Study on the mechanical and rheological properties of ultra-high performance concrete. Journal of Materials Research and Technology, 2022, 17, 111-124.	2.6	12
2	Workability and Mechanical Properties of Superplasticized Microfine Cement Grouts. Materials, 2022, 15, 1747.	1.3	2
3	Research on working performance of waterborne aliphatic polyurethane modified concrete. Journal of Building Engineering, 2022, 51, 104262.	1.6	8
4	Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete. Polymers, 2022, 14, 1956.	2.0	8
5	Considering the effect of the randomness of concrete strength and relative humidity on concrete creep. Structural Concrete, 2021, 22, E916.	1.5	4
6	Application investigation of high-phosphorus steel slag in cementitious material and ordinary concrete. Journal of Materials Research and Technology, 2021, 11, 2074-2091.	2.6	7
7	Mechanical Sensing Properties of Embedded Smart Piezoelectric Sensor for Structural Health Monitoring of Concrete. Research in Nondestructive Evaluation, 2021, 32, 88-112.	0.5	10
8	Microstructure and Adsorption Properties of MTMS / TEOS Co-precursor Silica Aerogels Dried at Ambient Pressure. Journal of Non-Crystalline Solids, 2021, 562, 120778.	1.5	24
9	Facile synthesis of aminophenylboronic decorated electrospun CoFe2O4 spinel nanofibers with enhanced electrocatalytic performance for glucose electrochemical sensor application. Ceramics International, 2021, 47, 19052-19062.	2.3	16
10	Preparation and performance of the ultra-high performance mortar based on simplex-centroid design method. Journal of Materials Research and Technology, 2021, 15, 3060-3077.	2.6	9
11	Development of High-Performance Microfine Cementitious Grout with High Amount of Fly Ash, Silica Fume, and Slag. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	6
12	Durability of a novel effective microfine cementitious grouting material in corrosion environments. Construction and Building Materials, 2021, 306, 124842.	3.2	10
13	Development of effective microfine cement-based grouts (EMCG) for porous and fissured strata. Construction and Building Materials, 2020, 262, 120775.	3.2	11
14	Study on micro structure and composition distribution of concrete surface zone based on fractal theory and XCT technology. Construction and Building Materials, 2020, 263, 120209.	3.2	23
15	Durability of a new type of cement-based composite grouting material under effects of chemical corrosion. Materials Express, 2020, 10, 948-954.	0.2	3
16	Performance and Microstructure of Alkali-Activated Red Mud-Based Grouting Materials Under Class F Fly Ash Amendment. Indian Geotechnical Journal, 2020, 50, 1048-1056.	0.7	5
17	Development of steel slag composite grouts for underground engineering. Journal of Materials Research and Technology, 2020, 9, 2793-2809.	2.6	13
18	EXPERIMENTAL STUDY ON SULFOALUMINATE CEMENT-BASED GROUT. Ceramics - Silikaty, 2020, , 249-262.	0.2	2

Fei Sha

#	Article	IF	CITATIONS
19	Reinforcement simulation of water-rich and broken rock with Portland cement-based grout. Construction and Building Materials, 2019, 221, 292-300.	3.2	43
20	Performance of typical cement suspension-sodium silicate double slurry grout. Construction and Building Materials, 2019, 200, 408-419.	3.2	29
21	Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass. Construction and Building Materials, 2018, 161, 282-291.	3.2	116
22	Effects of fineness on viscoelasticity of microfine cement-based grouts with fly ash, silica fume and superplasticiser. Advances in Cement Research, 2018, 30, 469-481.	0.7	14
23	Investigation of the Porosity Distribution, Permeability, and Mechanical Performance of Pervious Concretes. Processes, 2018, 6, 78.	1.3	36
24	Nondestructive Evaluation on Strain Sensing Capability of Piezoelectric Sensors for Structural Health Monitoring. Research in Nondestructive Evaluation, 2017, 28, 61-75.	0.5	6
25	Investigation of viscous behaviour and strength of microfine-cement-based grout mixed with microfine fly ash and superplasticiser. Advances in Cement Research, 2017, 29, 206-215.	0.7	24
26	Properties of Cement-Based Grouts with High Amounts of Ground Granulated Blast-Furnace Slag and Fly Ash. Journal of Materials in Civil Engineering, 2017, 29, .	1.3	34
27	Investigation on fundamental properties of microfine cement and cement-slag grouts. Construction and Building Materials, 2017, 153, 965-974.	3.2	58
28	Nonlinear Ultrasonic Nondestructive Evaluation of Damaged Concrete Based on Embedded Piezoelectric Sensors. Research in Nondestructive Evaluation, 2016, 27, 125-136.	0.5	5
29	Preparation and characterization of 2–2 piezoelectric composites for damping application. International Journal of Materials Research, 2015, 106, 1280-1284.	0.1	1
30	Concrete Damage Detection Based on Embedded Acoustic Emission Sensors. Applied Mechanics and Materials, 0, 351-352, 1222-1225.	0.2	2
31	Effects of PMN Volume Fraction on the Damping Properties of 1-3 Piezoelectric Damping Composites. Applied Mechanics and Materials, 0, 624, 8-12.	0.2	4
32	Fabrication of 1-3 Cement-Based Piezoelectric Ultrasonic Sensors for NDE Applications. Applied Mechanics and Materials, 0, 575, 580-584.	0.2	0