Hidayah Ariffin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6884339/publications.pdf

Version: 2024-02-01

172207 189595 2,926 97 29 50 citations g-index h-index papers 100 100 100 3003 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanocellulose applications in packaging materials. , 2022, , 289-310.		O
2	Facile Preparation of Cellulose Fiber Reinforced Polypropylene Using Hybrid Filler Method. Polymers, 2022, 14, 1630.	2.0	3
3	Emerging application of biochar as a renewable and superior filler in polymer composites. RSC Advances, 2022, 12, 13938-13949.	1.7	15
4	Fresh oil palm frond juice as a novel and alternative fermentation medium for bacterial cellulose production. Materials Today: Proceedings, 2021, 42, 101-106.	0.9	12
5	Optimisation of Epoxide Ring-Opening Reaction for the Synthesis of Bio-Polyol from Palm Oil Derivative Using Response Surface Methodology. Molecules, 2021, 26, 648.	1.7	25
6	Functionality of Cellulose Nanofiber as Bio-Based Nucleating Agent and Nano-Reinforcement Material to Enhance Crystallization and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers, 2021, 13, 389.	2.0	29
7	Improving the decolorization of glycerol by adsorption using activated carbon derived from oil palm biomass. Environmental Science and Pollution Research, 2021, 28, 27976-27987.	2.7	12
8	Performance Evaluation of Cellulose Nanofiber with Residual Hemicellulose as a Nanofiller in Polypropylene-Based Nanocomposite. Polymers, 2021, 13, 1064.	2.0	36
9	Thermal, Physical and Mechanical Properties of Poly(Butylene Succinate)/Kenaf Core Fibers Composites Reinforced with Esterified Lignin. Polymers, 2021, 13, 2359.	2.0	14
10	Bacterial Resistance against Heavy Metals in Pseudomonas aeruginosa RW9 Involving Hexavalent Chromium Removal. Sustainability, 2021, 13, 9797.	1.6	17
11	Combined Effects of Cellulose Nanofiber Nucleation and Maleated Polylactic Acid Compatibilization on the Crystallization Kinetic and Mechanical Properties of Polylactic Acid Nanocomposite. Polymers, 2021, 13, 3226.	2.0	9
12	Melt- vs. Non-Melt Blending of Complexly Processable Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposite. Polymers, 2021, 13, 404.	2.0	12
13	Process Optimization of Ultra-High Molecular Weight Polyethylene/Cellulose Nanofiber Bionanocomposites in Triple Screw Kneading Extruder by Response Surface Methodology. Molecules, 2020, 25, 4498.	1.7	7
14	Mechanical Strength, Thermal Conductivity and Electrical Breakdown of Kenaf Core Fiber/Lignin/Polypropylene Biocomposite. Polymers, 2020, 12, 1833.	2.0	18
15	Effect of Synthesis Temperature on the Size of ZnO Nanoparticles Derived from Pineapple Peel Extract and Antibacterial Activity of ZnO–Starch Nanocomposite Films. Nanomaterials, 2020, 10, 1061.	1.9	51
16	Modification of cellulose degree of polymerization by superheated steam treatment for versatile properties of cellulose nanofibril film. Cellulose, 2020, 27, 7417-7429.	2.4	28
17	Durability of Superheated Steam-Treated Light Red Meranti (Shorea spp.) and Kedondong (Canarium) Tj ETQq1	1 0,78431 1.6	4 rgBT /Overlo
18	Well-Dispersed Cellulose Nanofiber in Low Density Polyethylene Nanocomposite by Liquid-Assisted Extrusion. Polymers, 2020, 12, 927.	2.0	51

#	Article	IF	CITATIONS
19			

#	Article	IF	Citations
37	Sustainable one-pot process for the production of cellulose nanofiber and polyethylene / cellulose nanofiber composites. Journal of Cleaner Production, 2019, 207, 590-599.	4.6	63
38	Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 2019, 40, 446-463.	2.3	296
39	Utilisation of superheated steam in oil palm biomass pretreatment process for reduced chemical use and enhanced cellulose nanofibre production. International Journal of Nanotechnology, 2019, 16, 668.	0.1	31
40	Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 2018, 114, 54-63.	3.6	138
41	Effects of Surface Treatments on Tensile, Thermal and Fibre-matrix Bond Strength of Coir and Pineapple Leaf Fibres with Poly Lactic Acid. Journal of Bionic Engineering, 2018, 15, 1035-1046.	2.7	68
42	Effect of Poplar Cultivar "Hybrid 275―Fiber Impregnation with 1,3-Dimethylol-4,5-dihydroxyethyleneurea on the Properties of High Density Fiberboards. BioResources, 2018, 13, .	0.5	2
43	Cellular and Molecular Interaction of Human Dermal Fibroblasts with Bacterial Nanocellulose Composite Hydrogel for Tissue Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 39532-39543.	4.0	57
44	Subcritical Water-Carbon Dioxide Pretreatment of Oil Palm Mesocarp Fiber for Xylooligosaccharide and Glucose Production. Molecules, 2018, 23, 1310.	1.7	16
45	Superheated steam pretreatment of cellulose affects its electrospinnability for microfibrillated cellulose production. Cellulose, 2018, 25, 3853-3859.	2.4	40
46	In vitro cytotoxicity of superheated steam hydrolyzed oligo((R) -3-hydroxybutyrate-co- (R) -3-hydroxyhexanoate) and characteristics of its blend with poly(L-lactic acid) for biomaterial applications. PLoS ONE, 2018, 13, e0199742.	1,1	8
47	Effects of (R)-3-hydroxyhexanoate units on thermal hydrolysis of poly((R)-3-hydroxybutyrate-co-(R) Tj ETQq1	1 0,78431	4 rgBT /Over
48	Synthesis and comparative study of thermal, electrochemical, and cytotoxicity properties of graphene flake and sheet. Research on Chemical Intermediates, 2017, 43, 4981-4991.	1.3	6
49	Isolation and characterization of microcrystalline cellulose from roselle fibers. International Journal of Biological Macromolecules, 2017, 103, 931-940.	3.6	168
50	Dynamically controlled fibrillation under combination of ionic liquid with mechanical grinding. Journal of Applied Polymer Science, 2017, 134, .	1.3	13
51	Factorial experimental design for biobutanol production from oil palm frond (OPF) juice by Clostridium acetobutylicum ATCC 824. Chemical Engineering Research Bulletin, 2017, 19, 36.	0.2	1
52	Statistical Optimization for Biobutanol Production by Clostridium acetobutylicum ATCC 824 from Oil Palm Frond (OPF) Juice Using Response Surface Methodology. MATEC Web of Conferences, 2017, 111, 03001.	0.1	1
53	Factors Affecting Spinnability of Oil Palm Mesocarp Fiber Cellulose Solution for the Production of Microfiber. BioResources, 2016, 12, .	0.5	12
54	Optimization of Superheated Steam Treatment to Improve Surface Modification of Oil Palm Biomass Fiber. BioResources, 2016, 11 , .	0.5	7

#	Article	IF	CITATIONS
55	Superheated Steam Treatment of Oil Palm Mesocarp Fiber Improved the Properties of Fiber-Polypropylene Biocomposite. BioResources, 2016, 12, .	0.5	7
56	Enhancement of Tensile Properties of Surface Treated Oil Palm Mesocarp Fiber/Poly(Butylene) Tj ETQq0 0 0 rgB 665-672.	T /Overloc 0.3	k 10 Tf 50 707 1
57	Characterization and application of bioactive compounds in oil palm mesocarp fiber superheated steam condensate as an antifungal agent. RSC Advances, 2016, 6, 84672-84683.	1.7	16
58	Changes in diad sequence distribution by preferential chain scission during the thermal hydrolysis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer Journal, 2016, 48, 839-842.	1.3	4
59	Tar-free and Benzo[<i>a< i>]pyrene-free Hydrothermal Liquefaction of Bamboo and Antibacterial Property of Recovered Vinegar. Chemistry Letters, 2015, 44, 1342-1344.</i>	0.7	4
60	Effect of 3-Aminopropyltrimethoxysilane on Chemically Modified Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite. BioResources, 2015, 10, .	0.5	5
61	Influence of Fiber Content on Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposites. BioResources, 2015, 10, .	0.5	3
62	Non-solvent-based pretreatment of poly(3-hydroxybutyrate) for improved bio-based crotonic acid production. RSC Advances, 2015, 5, 33546-33553.	1.7	13
63	Case study for a palm biomass biorefinery utilizing renewable non-food sugars from oil palm frond for the production of poly(3-hydroxybutyrate) bioplastic. Journal of Cleaner Production, 2015, 87, 284-290.	4.6	48
64	Chemical Modification of Oil Palm Mesocarp Fiber by Methacrylate Silane: Effects on Morphology, Mechanical, and Dynamic Mechanical Properties of Biodegradable Hybrid Composites. BioResources, 2015, 11, .	0.5	5
65	Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	42
66	Enhancement of Mechanical and Dynamic Mechanical Properties of Hydrophilic Nanoclay Reinforced Polylactic Acid/Polycaprolactone/Oil Palm Mesocarp Fiber Hybrid Composites. International Journal of Polymer Science, 2014, 2014, 1-8.	1.2	40
67	Influence of Alkaline-Peroxide Treatment of Fiber on the Mechanical Properties of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite. BioResources, 2014, 10, .	0.5	25
68	Static Mechanical, Interfacial, and Water Absorption Behaviors of Alkali Treated Oil Palm Mesocarp Fiber Reinforced Poly(butylene succinate) Biocomposites. BioResources, 2014, 10, .	0.5	4
69	Surface Modifications of Oil Palm Mesocarp Fiber by Superheated Steam, Alkali, and Superheated Steam-Alkali for Biocomposite Applications. BioResources, 2014, 9, .	0.5	16
70	Compositional and Morphological Changes of Chemical Modified Oil Palm Mesocarp Fiber by Alkaline Bleaching and Silane Coupling Agents. BioResources, 2014, 9, .	0.5	5
71	Oil Palm Frond Juice as Future Fermentation Substrate: A Feasibility Study. BioMed Research International, 2014, 2014, 1-8.	0.9	18
72	Bio-based production of crotonic acid by pyrolysis of poly(3-hydroxybutyrate) inclusions. Journal of Cleaner Production, 2014, 83, 463-472.	4.6	52

#	Article	IF	CITATIONS
73	Efficient utilization of oil palm frond for bio-based products and biorefinery. Journal of Cleaner Production, 2014, 65, 252-260.	4.6	52
74	The Influence of Green Surface Modification of Oil Palm Mesocarp Fiber by Superheated Steam on the Mechanical Properties and Dimensional Stability of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite. International Journal of Molecular Sciences, 2014, 15, 15344-15357.	1.8	26
75	Synthesis of Bio-based Monomer from Vegetable Oil Fatty Acids and Design of Functionalized Greener Polyester. Chemistry Letters, 2014, 43, 1517-1519.	0.7	4
76	Enhancement of Tensile Strength of Oil Palm Mesocarp Fiber/Poly(butylene succinate) Biocomposite via Superheated Steam-Alkali Treatment of Oil Palm Mesocarp Fiber. Scientific Research Journal, 2014, 11, 19.	0.4	2
77	Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass and Bioenergy, 2013, 50, 1-9.	2.9	94
78	Performance evaluation and chemical recyclability of a polyethylene/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blend for sustainable packaging. RSC Advances, 2013, 3, 24378.	1.7	50
79	Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. International Journal of Hydrogen Energy, 2013, 38, 10277-10283.	3.8	37
80	Improved Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Produced byComamonassp. EB172 Utilizing Volatile Fatty Acids by Regulating the Nitrogen Source. BioMed Research International, 2013, 2013, 1-7.	0.9	11
81	Modification of Oil Palm Mesocarp Fiber Characteristics Using Superheated Steam Treatment. Molecules, 2013, 18, 9132-9146.	1.7	84
82	Oil Palm Mesocarp Fiber as New Lignocellulosic Material for Fabrication of Polymer/Fiber Biocomposites. International Journal of Polymer Science, 2013, 2013, 1-7.	1.2	35
83	Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay. Indian Journal of Materials Science, 2013, 2013, 1-11.	0.6	32
84	Factors Affecting Poly(3-hydroxybutyrate) Production from Oil Palm Frond Juice by <i>Cupriavidus necator</i> (<mml:math)="" 0="" 1-8.<="" 10="" 2012,="" and="" biomedicine="" biotechnology,="" etqq0="" journal="" of="" overlock="" rgbt="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>「f 50,302 [↑]</td><td>Гd (id="M1"></td></mml:math>	「f 50,302 [↑]	Гd (id="M1">
85	Intracellular polyhydroxyalkanoates recovery by cleaner halogen-free methods towards zero emission in the palm oil mill. Journal of Cleaner Production, 2012, 37, 353-360.	4.6	25
86	Efficient Polyhydroxyalkanoate Recovery from RecombinantCupriavidus necatorby Using Low Concentration of NaOH. Environmental Engineering Science, 2012, 29, 783-789.	0.8	16
87	Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology, 2012, 110, 566-571.	4.8	94
88	Recovery and purification of intracellular polyhydroxyalkanoates from recombinant Cupriavidus necator using water and ethanol. Biotechnology Letters, 2012, 34, 253-259.	1.1	18
89	Basic Characteristics of Cellulase Immobilized on Lignophenol. Kobunshi Ronbunshu, 2011, 68, 315-319.	0.2	8
90	Chemical recycling of polyhydroxyalkanoates as a method towards sustainable development. Biotechnology Journal, 2010, 5, 484-492.	1.8	73

#	Article	IF	CITATIONS
91	Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polymer Degradation and Stability, 2010, 95, 1375-1381.	2.7	82
92	Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer from wild-type Comamonas sp. EB172. Polymer Degradation and Stability, 2010, 95, 1382-1386.	2.7	53
93	Anhydride production as an additional mechanism of poly(3â€hydroxybutyrate) pyrolysis. Journal of Applied Polymer Science, 2009, 111, 323-328.	1.3	24
94	Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polymer Degradation and Stability, 2008, 93, 1433-1439.	2.7	102
95	Production of bacterial endoglucanase from pretreated oil palm empty fruit bunch by bacillus pumilus EB3. Journal of Bioscience and Bioengineering, 2008, 106, 231-236.	1.1	97
96	Precise Depolymerization of Poly(3-hydoxybutyrate) by Pyrolysis. , 0, , .		7
97	Multi-step pretreatment as an eco-efficient pretreatment method for the production of cellulose nanofiber from oil palm empty fruit bunch. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 1-8.	0.2	4