Larissa B Thackray

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6883847/publications.pdf

Version: 2024-02-01

45 papers

8,298 citations

36 h-index 233421 45 g-index

49 all docs 49 docs citations

49 times ranked 14060 citing authors

#	Article	IF	CITATIONS
1	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
2	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2022, $14, \ldots$	12.4	55
3	Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell, 2022, 185, 1572-1587.e11.	28.9	71
4	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
5	mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med, 2022, 3, 309-324.e6.	4.4	6
6	Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell, 2021, 184, 1214-1231.e16.	28.9	48
7	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	28.9	321
8	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics, 2021, 22, 287.	2.6	39
9	Helminth–virus interactions: determinants of coinfection outcomes. Gut Microbes, 2021, 13, 1961202.	9.8	17
10	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2021, , eabm3302.	12.4	13
11	The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell, 2020, 182, 901-918.e18.	28.9	98
12	LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature, 2020, 588, 308-314.	27.8	78
13	Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 402-414.	4.1	63
14	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	22.5	46
15	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
16	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
17	A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Journal of Immunology, 2020, 205, 915-922.	0.8	186
18	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	30.7	450

#	Article	IF	Citations
19	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
20	A long-distance relationship: the commensal gut microbiota and systemic viruses. Current Opinion in Virology, 2019, 37, 44-51.	5.4	19
21	Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Reports, 2018, 22, 3440-3453.e6.	6.4	97
22	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	3.5	43
23	Interferon Regulatory Factor 5-Dependent Immune Responses in the Draining Lymph Node Protect against West Nile Virus Infection. Journal of Virology, 2014, 88, 11007-11021.	3.4	24
24	ISG15 Functions as an Interferon-Mediated Antiviral Effector Early in the Murine Norovirus Life Cycle. Journal of Virology, 2014, 88, 9277-9286.	3.4	48
25	IRF-3, IRF-5, and IRF-7 Coordinately Regulate the Type I IFN Response in Myeloid Dendritic Cells Downstream of MAVS Signaling. PLoS Pathogens, 2013, 9, e1003118.	4.7	270
26	Adaptive Immunity Restricts Replication of Novel Murine Astroviruses. Journal of Virology, 2012, 86, 12262-12270.	3.4	65
27	Critical Role for Interferon Regulatory Factor 3 (IRF-3) and IRF-7 in Type I Interferon-Mediated Control of Murine Norovirus Replication. Journal of Virology, 2012, 86, 13515-13523.	3.4	76
28	Protruding Domain of Capsid Protein Is Necessary and Sufficient To Determine Murine Norovirus Replication and Pathogenesis <i>In Vivo</i> Iournal of Virology, 2012, 86, 2950-2958.	3.4	96
29	Essential Cell-Autonomous Role for Interferon (IFN) Regulatory Factor 1 in IFN- $\hat{1}^3$ -Mediated Inhibition of Norovirus Replication in Macrophages. Journal of Virology, 2012, 86, 12655-12664.	3.4	54
30	Nondegradative Role of Atg5-Atg12/ Atg16L1 Autophagy Protein Complex in Antiviral Activity of Interferon Gamma. Cell Host and Microbe, 2012, 11, 397-409.	11.0	222
31	Pathogenic Simian Immunodeficiency Virus Infection Is Associated with Expansion of the Enteric Virome. Cell, 2012, 151, 253-266.	28.9	252
32	The Interferon-Inducible Gene viperin Restricts West Nile Virus Pathogenesis. Journal of Virology, 2011, 85, 11557-11566.	3.4	130
33	Detection of Murine Norovirus 1 by Using Plaque Assay, Transfection Assay, and Real-Time Reverse Transcription-PCR before and after Heat Exposure. Applied and Environmental Microbiology, 2008, 74, 543-546.	3.1	254
34	Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion. Journal of Virology, 2008, 82, 2883-2894.	3.4	45
35	MDA-5 Recognition of a Murine Norovirus. PLoS Pathogens, 2008, 4, e1000108.	4.7	193
36	Coronavirus Replication Does Not Require the Autophagy Gene <i>ATG5</i> . Autophagy, 2007, 3, 581-585.	9.1	189

#	Article	IF	CITATION
37	Recovery of infectious murine norovirus using pol II-driven expression of full-length cDNA. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11050-11055.	7.1	96
38	Murine Noroviruses Comprising a Single Genogroup Exhibit Biological Diversity despite Limited Sequence Divergence. Journal of Virology, 2007, 81, 10460-10473.	3.4	235
39	Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells. Journal of Virology, 2006, 80, 7816-7831.	3.4	186
40	Pathology of Immunodeficient Mice With Naturally Occurring Murine Norovirus Infection. Toxicologic Pathology, 2006, 34, 708-715.	1.8	96
41	Murine Norovirus: a Model System To Study Norovirus Biology and Pathogenesis. Journal of Virology, 2006, 80, 5104-5112.	3.4	515
42	Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2004, 2, e432.	5.6	740
43	The N-Terminal Region of the Murine Coronavirus Spike Glycoprotein Is Associated with the Extended Host Range of Viruses from Persistently Infected Murine Cells. Journal of Virology, 2004, 78, 9073-9083.	3.4	47
44	CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15748-15753.	7.1	536
45	Apoptosis in normal and neoplastic mammary gland development. Microscopy Research and Technique, 2001, 52, 171-181.	2.2	65