Andrew P Kowalczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/688375/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Pathomechanisms of Desmoglein 1 Transmembrane Domain Mutations in Skin Disease. Journal of Investigative Dermatology, 2022, 142, 323-332.e8.	0.7	8
2	Desmosomes undergo dynamic architectural changes during assembly and maturation. Tissue Barriers, 2022, 10, 2017225.	3.2	6
3	The desmosome as a model for lipid raft driven membrane domain organization. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183329.	2.6	15
4	Protein exchange is reduced in calcium-independent epithelial junctions. Journal of Cell Biology, 2020, 219, .	5.2	20
5	VE-cadherin endocytosis controls vascular integrity and patterning during development. Journal of Cell Biology, 2020, 219, .	5.2	34
6	Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Reports, 2019, 28, 909-922.e6.	6.4	31
7	RPGRIP1L is required for stabilizing epidermal keratinocyte adhesion through regulating desmoglein endocytosis. PLoS Genetics, 2019, 15, e1007914.	3.5	8
8	Talin-Dependent Integrin Activation Regulates VE-Cadherin Localization and Endothelial Cell Barrier Function. Circulation Research, 2019, 124, 891-903.	4.5	59
9	The desmosome is a mesoscale lipid raft–like membrane domain. Molecular Biology of the Cell, 2019, 30, 1390-1405.	2.1	26
10	Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. Journal of Investigative Dermatology, 2018, 138, 32-37.	0.7	113
11	The Desmosomal Cadherin Desmoglein-2 Experiences Mechanical Tension as Demonstrated by a FRET-Based Tension Biosensor Expressed in Living Cells. Cells, 2018, 7, 66.	4.1	35
12	E-cadherin binds to desmoglein to facilitate desmosome assembly. ELife, 2018, 7, .	6.0	67
13	Meeting Report of the Pathogenesis of Pemphigus and Pemphigoid Meeting in Munich, September 2016. Journal of Investigative Dermatology, 2017, 137, 1199-1203.	0.7	34
14	p120-catenin regulates VE-cadherin endocytosis and degradation induced by the Kaposi sarcoma–associated ubiquitin ligase K5. Molecular Biology of the Cell, 2017, 28, 30-40.	2.1	23
15	Regulation of endothelial barrier function by p120-cateninâ^™VE-cadherin interaction. Molecular Biology of the Cell, 2017, 28, 85-97.	2.1	30
16	The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Molecular Biology of the Cell, 2017, 28, 76-84.	2.1	40
17	Cadherin tales: Regulation of cadherin function by endocytic membrane trafficking. Traffic, 2016, 17, 1262-1271.	2.7	75
18	Palmitoylation of Desmoglein 2 Is a Regulator of Assembly Dynamics and Protein Turnover. Journal of Biological Chemistry, 2016, 291, 24857-24865.	3.4	26

#	Article	IF	CITATIONS
19	Molecular organization of the desmosome as revealed by direct stochastic optical reconstruction microscopy. Journal of Cell Science, 2016, 129, 2897-904.	2.0	22
20	Ankyrin-G Inhibits Endocytosis of Cadherin Dimers. Journal of Biological Chemistry, 2016, 291, 691-704.	3.4	10
21	Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. Journal of Investigative Dermatology, 2016, 136, 59-66.	0.7	36
22	Desmosomes in acquired disease. Cell and Tissue Research, 2015, 360, 439-456.	2.9	45
23	Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells. Journal of Cell Science, 2015, 128, 4629-41.	2.0	18
24	Desmosome Assembly and Disassembly Are Membrane Raft-Dependent. PLoS ONE, 2014, 9, e87809.	2.5	67
25	Plakophilin-1 Protects Keratinocytes from Pemphigus Vulgaris IgG by Forming Calcium-Independent Desmosomes. Journal of Investigative Dermatology, 2014, 134, 1033-1043.	0.7	43
26	Structure, Function, and Regulation of Desmosomes. Progress in Molecular Biology and Translational Science, 2013, 116, 95-118.	1.7	213
27	p120-catenin and \hat{l}^2 -catenin differentially regulate cadherin adhesive function. Molecular Biology of the Cell, 2013, 24, 704-714.	2.1	40
28	Expression of an endocyticâ€defective VEâ€cadherin mutant cannot restore cellâ€cellâ€adhesion in the absence p120 in the endothelium. FASEB Journal, 2013, 27, 57.12.	0.5	0
29	p120-catenin binding masks an endocytic signal conserved in classical cadherins. Journal of Cell Biology, 2012, 199, 365-380.	5.2	158
30	Classical and desmosomal cadherins at a glance. Journal of Cell Science, 2012, 125, 2547-2552.	2.0	83
31	Adherens Junction Turnover: Regulating Adhesion Through Cadherin Endocytosis, Degradation, and Recycling. Sub-Cellular Biochemistry, 2012, 60, 197-222.	2.4	111
32	p120-Catenin Is Required for Mouse Vascular Development. Circulation Research, 2010, 106, 941-951.	4.5	71
33	N-Cadherin Levels in Endothelial Cells Are Regulated by Monolayer Maturity and p120 Availability. Cell Communication and Adhesion, 2008, 15, 333-349.	1.0	42
34	P120 atenin controls junctional leukocyte transmigration in vitro by regulating VE adherin surface expression. FASEB Journal, 2008, 22, 329.10.	0.5	0
35	Making Connections: Desmoplakin as an Intermediate Filament-Binding Protein. Journal of Investigative Dermatology, 2007, 127, E8-E9.	0.7	1
36	Comparative Analysis of Armadillo Family Proteins in the Regulation of A431 Epithelial Cell Junction Assembly, Adhesion and Migration. Journal of Investigative Dermatology, 2004, 123, 426-433.	0.7	44

1

#	Article	IF	CITATIONS
37	Protecting your tail: regulation of cadherin degradation by p120–catenin. Current Opinion in Cell Biology, 2004, 16, 522-527.	5.4	98
38	Photoreceptor Cells in Flies and Mammals. Developmental Cell, 2002, 2, 253-254.	7.0	14
39	Protocols that stick. Journal of Cell Science, 2002, 115, 3225-3225.	2.0	0
40	The Amino-terminal Domain of Desmoplakin Binds to Plakoglobin and Clusters Desmosomal Cadherin–Plakoglobin Complexes. Journal of Cell Biology, 1997, 139, 773-784.	5.2	217
41	Analysis of Desmosomal Cadherin–Adhesive Function and Stoichiometry of Desmosomal Cadherin-Plakoglobin Complexes. Journal of Investigative Dermatology, 1996, 107, 293-300.	0.7	81
42	Crosstalk Between Cell–Cell and Cell–Matrix Adhesion. , 0, , 271-294.		1
43	Tight Junctions in Simple and Stratified Epithelium. , 0, , 217-233.		1
44	Gap Junctions: Connexin Functions and Roles in Human Disease. , 0, , 197-216.		1
45	Signaling To and Through The Endothelial Adherens Junction. , 0, , 169-195.		4
46	Integrin Trafficking. , 0, , 89-107.		4
47	Cell Matrix Adhesion in Three Dimensions. , 0, , 135-149.		0
48	The Ins and Outs of Integrin Signaling. , 0, , 1-23.		0
49	Desmosomes in Development and Disease. , 0, , 235-249.		4
50	Cadherin Trafficking and Junction Dynamics. , 0, , 251-270.		3
51	Integrin Signaling Through Focal Adhesion Kinase. , 0, , 25-46.		0
52	The Paxillin Family and Tissue Remodeling. , 0, , 47-69.		0
53	Adhesion Dynamics in Motile Cells. , 0, , 71-88.		1

54 Hemidesmosomes and their Components: Adhesion versus Signaling in Health and Disease. , 0, , 109-133.

4

IF CITATIONS

#	Article	IF
55	Armadillo Repeat Proteins at Epithelial Adherens Junctions. , 0, , 151-167.	