
Yibei Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6883565/publications.pdf Version: 2024-02-01

VIREL XIAC

#	Article	IF	CITATIONS
1	Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems. Molecular Cell, 2022, 82, 852-867.e5.	9.7	40
2	Discovery of 4′-O-methylscutellarein as a potent SARS-CoV-2 main protease inhibitor. Biochemical and Biophysical Research Communications, 2022, 604, 76-82.	2.1	9
3	Real-time observation of CRISPR spacer acquisition by Cas1–Cas2 integrase. Nature Structural and Molecular Biology, 2020, 27, 489-499.	8.2	18
4	Sortase-mediated fluorescent labeling of CRISPR complexes. Methods in Enzymology, 2019, 616, 43-59.	1.0	10
5	Reconstitution and biochemical characterization of ribonucleoprotein complexes in Type I-E CRISPR–Cas systems. Methods in Enzymology, 2019, 616, 27-41.	1.0	2
6	Introducing a Spectrum of Long-Range Genomic Deletions in Human Embryonic Stem Cells Using Type I CRISPR-Cas. Molecular Cell, 2019, 74, 936-950.e5.	9.7	123
7	Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex. Cell, 2018, 175, 934-946.e15.	28.9	74
8	Structure basis for RNA-guided DNA degradation by Cascade and Cas3. Science, 2018, 361, .	12.6	97
9	How type II CRISPR–Cas establish immunity through Cas1–Cas2-mediated spacer integration. Nature, 2017, 550, 137-141.	27.8	111
10	Massively Parallel Biophysical Analysis of CRISPR-Cas Complexes on Next Generation Sequencing Chips. Cell, 2017, 170, 35-47.e13.	28.9	96
11	Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System. Cell, 2017, 170, 48-60.e11.	28.9	162
12	PIWI Takes a Giant Step. Cell, 2016, 167, 310-312.	28.9	14
13	Structural basis for promiscuous PAM recognition in type l–E Cascade from E. coli. Nature, 2016, 530, 499-503.	27.8	157
14	Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nature Structural and Molecular Biology, 2014, 21, 771-777.	8.2	167