Niklaus U Wetter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6883517/publications.pdf

Version: 2024-02-01

170 papers 2,358 citations

28 h-index 253896 43 g-index

174 all docs

 $\begin{array}{c} 174 \\ \text{docs citations} \end{array}$

174 times ranked

1799 citing authors

#	Article	IF	CITATIONS
1	Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers in Surgery and Medicine, 2004, 35, 117-120.	1.1	236
2	Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles. Applied Physics B: Lasers and Optics, 2009, 94, 239-242.	1.1	125
3	Dental bleaching efficacy with diode laser and LED irradiation: An in vitro study. Lasers in Surgery and Medicine, 2004, 35, 254-258.	1.1	102
4	Optimization of titanium cutting by factorial analysis of the pulsed Nd:YAG laser parameters. Journal of Materials Processing Technology, 2006, 179, 105-110.	3.1	86
5	Er3+ laser transition in PbO–PbF2–B2O3 glasses. Journal of Non-Crystalline Solids, 2004, 348, 94-97.	1.5	72
6	Intrapulpal Temperature during Preparation with the Er:YAG Laser: Anin VitroStudy. Photomedicine and Laser Surgery, 2005, 23, 182-186.	2.1	61
7	Bleaching Efficacy of Whitening Agents Activated by Xenon Lamp and 960-nm Diode Radiation. Photomedicine and Laser Surgery, 2004, 22, 489-493.	2.1	60
8	Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths. Optics Express, 2012, 20, 9841.	1.7	53
9	Optical properties of Nd doped Bi2O3-PbO-Ga2O3 glasses. Optics Express, 2000, 6, 104.	1.7	50
10	Frequency upconversion properties of Tm3+ doped TeO2–ZnO glasses containing silver nanoparticles. Journal of Alloys and Compounds, 2012, 536, S504-S506.	2.8	46
11	Influence of the heat treatment on the nucleation of silver nanoparticles in Tm3+ doped PbO-GeO2 glasses. Applied Physics B: Lasers and Optics, 2011, 103, 165-169.	1.1	44
12	Growth of LiYF4 crystals doped with holmium, erbium and thulium. Journal of Crystal Growth, 1996, 166, 423-428.	0.7	43
13	Low-Level Laser Therapy in Burning Mouth Syndrome Patients: A Pilot Study. Photomedicine and Laser Surgery, 2010, 28, 835-839.	2.1	42
14	Lead fluoroborate glasses doped with Nd3+. Journal of Luminescence, 2003, 102-103, 101-105.	1.5	39
15	Color differences of canines and incisors in a comparative long-term clinical trial of three bleaching systems. Lasers in Medical Science, 2009, 24, 941-947.	1.0	39
16	Effect of the ytterbium concentration on the upconversion luminescence of Yb3+/Er3+ co-doped PbO–GeO2–Ga2O3 glasses. Journal of Non-Crystalline Solids, 2008, 354, 4755-4759.	1.5	37
17	Compact, diode-side-pumped Nd^3+:YLiF_4 laser at 1053 nm with 45% efficiency and diffraction- limited quality by mode controlling. Optics Letters, 2009, 34, 292.	1.7	34
18	Effective Transmission of Light for Media Culture, Plates and Tubes. Photochemistry and Photobiology, 2012, 88, 1211-1216.	1.3	34

#	Article	IF	CITATIONS
19	Spectroscopic properties of heavy metal oxide glasses doped with erbium. Journal of Luminescence, 2003, 102-103, 91-95.	1.5	33
20	Efficient and compact diode-side-pumped Nd:YLF laser operating at 1053 nm with high beam quality. Journal of Optics, 2008, 10, 104013.	1.5	33
21	Increased Er3+ upconversion in tellurite fibers and glasses by co-doping with Yb3+. Optical Materials, 2010, 33, 107-111.	1.7	32
22	Study of the most suitable new glass laser to incorporate ytterbium: alkali niobium tellurite, lead fluorborate or heavy metal oxide. Journal of Luminescence, 2003, 102-103, 106-111.	1.5	31
23	Random Lasing at Localization Transition in a Colloidal Suspension (TiO ₂ @Silica). ACS Omega, 2017, 2, 2415-2421.	1.6	31
24	Three-fold effective brightness increase of laser diode bar emission by assessment and correction of diode array curvature. Optics and Laser Technology, 2001, 33, 181-187.	2.2	30
25	Production and characterization of femtosecond laser-written double line waveguides in heavy metal oxide glasses. Optical Materials, 2018, 75, 267-273.	1.7	30
26	GeO2–PbO–Bi2O3 glasses doped with Yb3+ for laser applications. Journal of Non-Crystalline Solids, 2004, 348, 103-107.	1.5	28
27	Spectroscopic properties of Yb3+ doped PbO–Bi2O3–Ga2O3 glasses for IR laser applications. Optical Materials, 2005, 27, 1576-1582.	1.7	28
28	Effects of 960-nm Diode Laser Irradiation on Calcium Solubility of Dental Enamel: Anin VitroStudy. Photomedicine and Laser Surgery, 2006, 24, 689-693.	2.1	28
29	Compact, diode-side-pumped and Q-switched Nd:YLiF4 laser cavity operating at 1053 nm with diffraction limited beam quality. Applied Physics B: Lasers and Optics, 2012, 106, 877-880.	1.1	28
30	Evaluation of laser level populations of erbium-doped glasses. Journal of Luminescence, 2007, 124, 200-206.	1.5	27
31	Mode-controlling in a 7.5 cm long, transversally pumped, high power Nd:YVO4laser. Journal of Optics, 2008, 10, 104012.	1.5	26
32	Large area resonant feedback random lasers based on dye-doped biopolymer films. Optics Express, 2015, 23, 29954.	1.7	26
33	Diode-side-pumped Nd:YLiF4laser emitting at 1053 nm with 53.6% optical efficiency and diffraction-limited beam quality. Laser Physics Letters, 2013, 10, 035807.	0.6	25
34	Fabrication and characterization of Er3+-doped GeO2–PbO and GeO2–PbO–Bi2O3 glass fibers. Journal of Non-Crystalline Solids, 2006, 352, 3530-3534.	1.5	24
35	Diode-side-pumped Nd:YLF laser emitting at 1313Ânm based on DBMC technology. Optics Letters, 2013, 38, 4088.	1.7	24
36	Laser development of rare-earth doped crystals. Journal of Alloys and Compounds, 2002, 344, 231-239.	2.8	23

#	Article	IF	CITATIONS
37	Upconversion luminescence and decay kinetics in a diode-pumped nanocrystalline Nd^3+:YVO_4 random laser. Optics Express, 2012, 20, 12487.	1.7	23
38	Spectroscopic properties of lead fluoroborate glasses codoped with Er^3+ and Yb^3+. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2921.	0.9	22
39	Spectroscopic properties of lead fluoroborate and heavy metal oxide glasses doped with Yb3+. Journal of Non-Crystalline Solids, 2002, 304, 233-237.	1.5	21
40	Tunable Single-Frequency Nd:YVO\$_{4}\$BiB/\$_{3}\$O\$_{6}\$ Ring Laser at 671 nm. IEEE Journal of Quantum Electronics, 2010, 46, 804-809.	1.0	21
41	Influence of pump bandwidth on the efficiency of side-pumped, double-beam mode-controlled lasers: establishing a new record for Nd:YLiF_4 lasers using VBG. Optics Express, 2015, 23, 9379.	1.7	21
42	Enhanced efficiency of a continuous-wave mode-locked Nd:YAG laser by compensation of the thermally induced, polarization-dependent bifocal lens. Applied Optics, 1993, 32, 5280.	2.1	20
43	Influence of Excited-State-Energy Upconversion on Pulse Shape in Quasi-Continuous-Wave Diode-Pumped Er:LiYF\$_{4}\$ Lasers. IEEE Journal of Quantum Electronics, 2010, 46, 99-104.	1.0	20
44	Directional random laser source consisting of a HC-ARROW reservoir connected to channels for spectroscopic analysis in microfluidic devices. Applied Optics, 2016, 55, 5393.	2.1	20
45	Up-conversion losses in Nd3+ doped lead fluoroborate glasses. Journal of Non-Crystalline Solids, 2004, 348, 98-102.	1.5	19
46	Dynamic random lasing in silica aerogel doped with rhodamine 6G. RSC Advances, 2018, 8, 29678-29685.	1.7	19
47	Diode-side-pumped continuous wave Nd^3+ : YVO_4 self-Raman laser at 1176  nm. Optics Lette 3524.	ers, 2015, 1.7	40,
48	Quasi-continuous wave Raman lasers at 990 and 976  nm based on a three-level Nd:YLF laser. Optics Letters, 2014, 39, 2982.	1.7	17
49	Spectroscopic properties of lead fluoroborate glasses doped with ytterbium. Optics Express, 2001, 8, 585.	1.7	16
50	Laser decontamination of the radioactive lightning rods. Radiation Physics and Chemistry, 2014, 95, 188-190.	1.4	16
51	Tunable green/red luminescence by infrared upconversion in biocompatible forsterite nanoparticles with high erbium doping uptake. Optical Materials, 2018, 76, 407-415.	1.7	16
52	Mode-locking operation of a pulsed Nd:YAG laser with $F_2^{\hat{a}}$:LiF color-center crystal in a dual configuration. Applied Optics, 1992, 31, 2719.	2.1	14
53	Growth of LiY1â^'xLuxF4 crystals under CF4 atmosphere. Journal of Alloys and Compounds, 2002, 344, 203-206.	2.8	14
54	Lead fluoroborate glass doped with ytterbium. Journal of Alloys and Compounds, 2002, 344, 264-267.	2.8	14

#	Article	IF	CITATIONS
55	A high power 2.3 µm Yb:Tm:YLF laser diode-pumped simultaneously at 685 and 960 nm. Journal of Optics, 2008, 10, 104009.	1.5	13
56	100 W continuous linearly polarized, high beam quality output from standard side-pumped Nd:YAG laser modules. Optics and Laser Technology, 2017, 96, 271-275.	2.2	13
57	Polydispersed Powders (Nd ³⁺ :YVO ₄) for Ultra Efficient Random Lasers. Particle and Particle Systems Characterization, 2018, 35, 1700335.	1.2	13
58	Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser. Optics Express, 2010, 18, 4796.	1.7	12
59	Investigation of blue emission from Raman-active crystals: Its origin and impact on laser performance. Optical Materials Express, 2014, 4, 889.	1.6	12
60	Anomalous transport of light at the phase transition to localization: strong dependence with incident angle. Photonics Research, 2018, 6, 929.	3.4	12
61	Double line waveguide amplifiers written by femtosecond laser irradiation in rare-earth doped germanate glasses. Journal of Luminescence, 2020, 217, 116789.	1.5	12
62	Diode-side-pumped, intracavity Nd:YLF/KGW/LBO Raman laser at 573  nm for retinal photocoagulation. Optics Letters, 2021, 46, 508.	1.7	10
63	Localization of light induced in ordered colloidal suspensions: powerful sensing tools. Nanoscale, 2021, 13, 6417-6425.	2.8	10
64	Mode-locking operation of Nd:LuYLF. Optical Engineering, 2001, 40, 1573.	0.5	9
65	Single frequency, continuously tunable, diode-pumped Nd:LiY0.5Gd0.5F4 microlaser. Optics Communications, 2002, 204, 311-315.	1.0	9
66	Lasing of a single crystal Nd3+ fluoride fiber. Optics Communications, 2010, 283, 3487-3491.	1.0	9
67	Intracavity frequency converted Raman laser producing 10 deep blue to cyan emission lines with up to 094  W output power. Optics Letters, 2014, 39, 6799.	1.7	9
68	Power scaling of a side-pumped Nd:YLF laser based on DBMC technology. Applied Physics B: Lasers and Optics, 2014, 117, 855-860.	1.1	9
69	Optical properties of lithium fluoride fibers grown by micro-pulling-down method. Optical Materials, 2004, 27, 487-490.	1.7	8
70	Improving performance in ytterbium-erbium doped waveguide amplifiers through scattering by large silicon nanostructures. Journal of Alloys and Compounds, 2019, 794, 120-126.	2.8	8
71	Pulse-Energy-Enhanced, Strongly Modulated Er:YLF Laser for Medical Applications. AIP Conference Proceedings, 2008, , .	0.3	7
72	Alterations in enamel remineralization in vitro induced by blue light. Laser Physics, 2010, 20, 1469-1474.	0.6	7

#	Article	IF	CITATIONS
73	1kHz repetition rate, mode-controlled, passively Q-switched Nd:YLF laser operating at 1053 nm., 2012, , .		7
74	Highly efficient, dynamically stable Nd : YAG single-rod resonators with 60% TEM ₀₀ extraction efficiency and high misalignment stability. Laser Physics, 2014, 24, 085801.	0.6	7
75	Dynamically stable Nd:YAG resonators with beam quality beyond the birefringence limit and pumping of a singly resonant optical parametric oscillator. Optics Letters, 2018, 43, 695.	1.7	7
76	Nd:YLF laser at 1053Ânm diode side pumped at 863Ânm with a near quantum-defect slope efficiency. Optics and Laser Technology, 2022, 149, 107818.	2.2	7
77	Synthesis and growth of materials for solid state lasers: Nd:YLF and Nd:LLW single crystal fibers. Journal of Crystal Growth, 2011, 317, 4-7.	0.7	6
78	Dynamically stable single frequency ring resonator from diode pumped Nd:YAG modules with 55.6 W of output power. Optics Express, 2021, 29, 23167.	1.7	6
79	Pedestal waveguides based on GeO2-Bi2O3, GeO2-PbO, Ta2O5 and SiOxNy cores as platforms for optical amplifiers and nonlinear optics applications: Review of recent advances. Journal of Luminescence, 2021, 236, 118113.	1.5	6
80	Random lasing at localization induced in correlated colloidal system. Optical Materials, 2021, 120, 111428.	1.7	6
81	Glasses of heavy metal and gallium oxides doped with neodymium. Radiation Effects and Defects in Solids, 2001, 156, 371-375.	0.4	5
82	Random laser materials: from ultrahigh efficiency to very low threshold (Anderson localization). Journal of Materials Science: Materials in Electronics, 2019, 30, 16761-16773.	1.1	5
83	A new double-line waveguide architecture for photonic applications using fs laser writing in Nd3+ doped GeO2-PbO glasses. Optical Materials, 2022, 129, 112495.	1.7	5
84	Zone melting growth of LiSrAlF6:Cr crystals for diode laser pumping. Journal of Crystal Growth, 2002, 241, 177-182.	0.7	4
85	Compact diode-side-pumped Nd:YLF laser with high beam quality. AIP Conference Proceedings, 2008, , .	0.3	4
86	Simple and versatile heterodyne whole-field interferometer for phase optics characterization. Review of Scientific Instruments, 2012, 83, 103103.	0.6	4
87	Yb:KGW self-Raman laser with 89 cmâ^³1 Stokes shift and more than 32% diode-to-Stokes optical efficiency. Optics and Laser Technology, 2020, 121, 105835.	2.2	4
88	Tunable dual wavelength emission and bandwidth narrowing of a laser diode array with a simple external cavity. Applied Physics B: Lasers and Optics, 2007, 86, 515-518.	1.1	3
89	Real-time contour fringes obtained with a variable synthetic wavelength from a single diode laser. Applied Physics B: Lasers and Optics, 2015, 118, 159-166.	1.1	3
90	Core-shell (TiO2@Silica) nanoparticles for random lasers. , 2018, , .		3

#	Article	IF	Citations
91	Measuring photoelastic dispersion coefficients in material samples with digital holography. , 2020, , .		3
92	Nd:YLF laser pumped at 797 nm with 68% slope efficiency. , 2022, , .		3
93	Adaptive, dynamically stable, high-power ring resonator. , 2022, , .		3
94	High-efficiency Q-switched and diffraction-limited Nd:YLF side-pumped laser., 2012,,.		2
95	Neodymium doped lithium yttrium fluoride (Nd:YLiF 4) lasers. , 2013, , 323-340.		2
96	A single-frequency, diode-pumped Nd:YLF laser at 657 nm: a frequency and intensity noise comparison with an extended cavity diode laser. Laser Physics, 2013, 23, 025801.	0.6	2
97	Enabling focusing around the corner in multiple scattering media. Applied Optics, 2015, 54, 7740.	2.1	2
98	Dynamically stable continuous single frequency green ring laser. , 2019, , .		2
99	Double line neodymium doped GeO2-PbO waveguide amplifier for the second telecom window. , 2020, , .		2
100	Two new blue laser emission lines from an intracavity Raman laser. , 2014, , .		2
101	Dynamically stable lasers from commercial Nd:YAG modules with high beam quality and single-frequency: The correct choice of the fundamental waist size at the rod., 2020,,.		2
102	High power, good beam quality Nd:YVO[sub 4] laser using a resonator with high extinction ratio for higher-order mode thresholds. AIP Conference Proceedings, 2008, , .	0.3	1
103	Inhibition of enamel remineralization with blue LED: an in vitro study. , 2009, , .		1
104	High beam quality cw $1.5\mathrm{W}$ BaWO<inf>4</inf> Raman laser using Nd:YLF as laser active medium. , $2011,$, .		1
105	Pulse-to-pulse stability analysis in a frequency-doubled, q-switched Nd:YAG rod-laser., 2013,,.		1
106	Highly efficient TEM00 mode operation of a diode-side-pumped Nd:YAG rod Laser., 2013,,.		1
107	Double-beam, mode-controlling diode side-pumped Nd:YLF laser with near 60% efficiency. , 2015, , .		1
108	Random lasers for lab-on-chip applications. , 2016, , .		1

#	Article	IF	Citations
109	Development of a dynamic interferometric focusing system for femtosecond laser machining., 2017,,.		1
110	Vital tooth bleaching using different techniques: A clinical evaluation. Future Dental Journal, 2018, , .	0.1	1
111	Focus issue introduction: Advanced Solid-State Lasers 2020. Optical Materials Express, 2021, 11, 952.	1.6	1
112	Backscattered light properties during femtosecond laser ablation and development of a dynamic interferometric focusing system. , 2018 , , .		1
113	Influence of the fraction of absorbed pump power on the performance of Nd3+:YVO4 powder random lasers. , 2018, , .		1
114	Comparison of grazing incidence Nd:YVO4 lasers pumped at 808 and 880 nm., 2013,,.		1
115	Q-switching of a mode-controlled, diode-side-pumped Nd3+:YLiF4 laser at 1053 nm with high efficiency and diffraction limited beam quality., 2011,,.		1
116	Dynamically stable operation of a 100-watt level CW single frequency ring laser at 1064 nm., 2018,,.		1
117	Localization of light: beginning of a new optics. , 2018, , .		1
118	Quasi-three level Nd:YLF fundamental and Raman laser operating under 872-nm and 880-nm direct diode pumping. , 2018, , .		1
119	Emission properties study of a Nd3+-doped TZA glass random laser. , 2022, , .		1
120	Laser operation of Nd/sub x/:Y/sub y/Gd/sub 1-x-y/LiF/sub 4/ mixed crystals. , 0, , .		0
121	Optimum Yb/sup 3+/ concentration in PbO-Bi/sub 2/O/sub 3/-Ga/sub 2/O/sub 3/ glasses for ultrashort las.er applications. , 0, , .		0
122	Study of neodymium laser transition in glasses and influence of up-conversion processes under diode pumping. , 0, , .		0
123	Side-pumped, high beam-quality Nd:YLF amplifier for LIDAR applications. , 0, , .		O
124	Diode side-pumped, high efriciency Nd:YVO <inf>4</inf> laser and improvement in beam quality., 2007,,.		0
125	High-Power Diode-Pumped Single-Frequency Nd:YLF and Nd:YVO <inf>4</inf> Lasers with Intra-cavity Second-Harmonic Generation to the Red Range., 2008,,.		0
126	Increasing Er[sup 3+] Up-Conversion Intensities By Co-Doping Telluride Glasses With Yb[sup 3+]. AIP Conference Proceedings, 2008, , .	0.3	0

#	Article	IF	Citations
127	Selected Papers from RIAO/OPTILAS 2007 (Campinas, São Paulo, Brazil, 21–26 October 2007). Journal of Optics, 2008, 10, 100201.	1.5	О
128	Energy-transfer processes in high power Yb:Tm:YLF lasers emitting at 2.3 \hat{l} 4m. AIP Conference Proceedings, 2008, , .	0.3	0
129	Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application. AIP Conference Proceedings, 2008, , .	0.3	O
130	High efficiency diode-side-pumped Nd ³⁺ :YLiF <inf>4</inf> laser at 1053nm., 2009,,.		0
131	Single-frequency and Kerr-lens mode-locked Nd:YLF/ppKTP ring laser. , 2009, , .		0
132	Large hollow-core fiber random dye laser. , 2009, , .		0
133	0.6W single-frequency Nd:YVO <inf>4</inf> /BiB <inf>3</inf> O <inf>6</inf> laser at 671nm., 2009,,.		0
134	Lidar-like equation model for optical coherence tomography signal solution., 2011,,.		0
135	Two-wavelength whole-field interferometry setup for thermal lens study. Proceedings of SPIE, 2012, , .	0.8	0
136	Random laser generation in rhodamine-doped aerogel. , 2013, , .		0
137	Intracavity Raman lasers at 990 nm and 976 nm based on a three-level Nd:YLF fundamental laser. , 2014, , .		O
138	Rhodamine-doped Aerogel Random Laser. , 2014, , .		0
139	Record Efficiencies And Power Scalabililty In Diode-Side-Pumped Nd:YLiF4 Lasers Using Double-Beam Mode-Controlling. , 2014, , .		0
140	Ten deep blue to cyan emission lines from an intracavity frequency converted Raman laser., 2015,,.		0
141	Diode side pumped, quasi-CW Nd:YVO ₄ self-Raman laser operating at 1176 nm. Proceedings of SPIE, 2015, , .	0.8	О
142	Optimizing grain size distribution in Nd:YVO ₄ powder pellets for random laser action with high efficiency. Proceedings of SPIE, 2017, , .	0.8	0
143	Pressure measurement by low coherence speckle interferometry membrane shaping with tunable diode lasers. , 2018, , .		0
144	Production of a microfluidic random laser using ultrashort laser pulses. , 2019, , .		0

#	Article	IF	CITATIONS
145	Optimization of BGO Er/Yb doped pedestal waveguide amplifiers with Si nanostructures. , 2019, , .		О
146	Focus issue introduction: Advanced Solid-State Lasers 2020. Optics Express, 2021, 29, 8365.	1.7	0
147	Focus issue introduction: Advanced Solid-State Lasers 2020. Optical Materials Express, 2021, 11, 952.	1.6	0
148	Record Optical Efficiency for a Diode-Side-Pumped Nd:YLiF4 Laser Operating at 1053 nm., 2021,,.		0
149	New double line architecture produced by fs laser irradiation in Nd3+ doped TeO2-ZnO glass for photonic applications. , 2021, , .		O
150	Investigation of a Blue Luminescence Power in Raman Crystals. , 2012, , .		0
151	Progressive Power Lenses (PPL) Characterization with Multi-Wavelength Speckle Interferometry. , 2012, , .		О
152	Nd:GdVO4 self-Raman Laser Emitting at 994 nm. , 2013, , .		0
153	Ten deep-blue to cyan laser emission lines from 451 nm to 495 nm using Nd:YLF-KGW-LBO intracavity Raman laser. , 2014, , .		0
154	LD-side-pumped Nd:YVO4 self-Raman laser at 1176 nm., 2014,,.		0
155	45W CW TEM00 mode diode-side-pumped Nd:YAG rod laser with linearly polarized beam. , 2014, , .		O
156	Simple set-up for measuring low transmission losses of optical materials used in laser cavities. , 2014, , .		0
157	Grain size distribution for optimized random laser emission in Nd3+:YVO4 powder pellets. , 2015, , .		О
158	Continuous yellow-orange laser based on a diode-side-pumped Nd3+:YVO4 self-Raman laser. , 2015, , .		0
159	Ultra-High Efficiency and Low Threshold in Random Lasers. , 2018, , .		O
160	Intracavity diode-side-pumped Raman laser at 1147 nm and 1163 nm., 2018, , .		0
161	Influence of silicon nanocrystals on the performance of Yb3+/Er3+: Bi2O3-GeO2 pedestal waveguides for amplification at 1542 nm., 2018,,.		0
162	Femtosecond laser-written double line waveguides in germanate and tellurite glasses. , 2018, , .		0

#	Article	lF	CITATIONS
163	Yellow laser at 573 nm generated by intracavity SHG diode- side-pumped Raman laser. , 2019, , .		O
164	Measurement of Differential Pressure by Optical Interferometry with Multimode Tunable Lasers. Journal of Engineering Science and Technology Review, 2020, 13, 17-21.	0.2	0
165	Nd:YLF/KGW intracavity Raman laser in DBMC configuration emitting at $1147~{\rm and}~1163~{\rm nm}$ in TEM00. , 2020, , .		O
166	Polydispersed Nd3+:YVO4+SiO2 powders for highly efficient random lasers., 2020,,.		0
167	Three-level Nd:YLF Raman laser directly pumped by a beam shaped diode bar., 2020,,.		O
168	Temporal study of a Nd3+ doped TZA glass random laser. , 2021, , .		0
169	Fs laser writing in Nd3+ doped GeO2-PbO glasses for the production of a new double line waveguide architectures for photonic applications. , 2022, , .		0
170	Influence of different parameters used for fs laser writing of double line waveguides into Nd3+ doped TeO2-ZnO glasses by fs laser writing., 2022,,.		O