
Panagiotis Arapitsas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6883067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of Brazilian grape juice metabolomic profile changes caused by methyl jasmonate preâ€harvest treatment. International Journal of Food Science and Technology, 2023, 58, 3224-3233.	1.3	4
2	Modeling grape taste and mouthfeel from chemical composition. Food Chemistry, 2022, 371, 131168.	4.2	10
3	Measurement of the Effect of Accelerated Aging on the Aromatic Compounds of Gewürztraminer and Teroldego Wines, Using a SPE-GC-MS/MS Protocol. Metabolites, 2022, 12, 180.	1.3	8
4	Flint glass bottles cause white wine aroma identity degradation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
5	Improving the Phloroglucinolysis Protocol and Characterization of Sagrantino Wines Proanthocyanidins. Molecules, 2021, 26, 1087.	1.7	10
6	Comparative Metabolite and Gene Expression Analyses in Combination With Gene Characterization Revealed the Patterns of Flavonoid Accumulation During Cistus creticus subsp. creticus Fruit Development. Frontiers in Plant Science, 2021, 12, 619634.	1.7	7
7	The Metabolomic-Gut-Clinical Axis of Mankai Plant-Derived Dietary Polyphenols. Nutrients, 2021, 13, 1866.	1.7	14
8	Cluster Thinning and Vineyard Site Modulate the Metabolomic Profile of Ribolla Gialla Base and Sparkling Wines. Metabolites, 2021, 11, 331.	1.3	11
9	Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Research International, 2021, 143, 110277.	2.9	18
10	H/D Exchange Processes in Flavonoids: Kinetics and Mechanistic Investigations. Molecules, 2021, 26, 3544.	1.7	2
11	Grapevine and Wine Metabolomics-Based Guidelines for FAIR Data and Metadata Management. Metabolites, 2021, 11, 757.	1.3	16
12	LC–MS-Based Metabolomics Discriminates Premium from Standard Chilean cv. Cabernet Sauvignon Wines from Different Valleys. Metabolites, 2021, 11, 829.	1.3	3
13	Liquid Chromatography–Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. Journal of Agricultural and Food Chemistry, 2020, 68, 13367-13379.	2.4	15
14	Kinetic investigations of sulfite addition to flavanols. Scientific Reports, 2020, 10, 12792.	1.6	12
15	Exploring Olfactory–Oral Cross-Modal Interactions through Sensory and Chemical Characteristics of Italian Red Wines. Foods, 2020, 9, 1530.	1.9	17
16	Modulating Wine Aromatic Amino Acid Catabolites by Using Torulaspora delbrueckii in Sequentially Inoculated Fermentations or Saccharomyces cerevisiae Alone. Microorganisms, 2020, 8, 1349.	1.6	16
17	White wine light-strike fault: A comparison between flint and green glass bottles under the typical supermarket conditions. Food Packaging and Shelf Life, 2020, 24, 100492.	3.3	13
18	Use of Untargeted Liquid Chromatography–Mass Spectrometry Metabolome To Discriminate Italian Monovarietal Red Wines, Produced in Their Different Terroirs. Journal of Agricultural and Food Chemistry, 2020, 68, 13353-13366.	2.4	41

PANAGIOTIS ARAPITSAS

#	Article	IF	CITATIONS
19	LC–MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions. Metabolomics, 2020, 16, 18.	1.4	15
20	<i>Saccharomyces cerevisiae</i> and <i>Torulaspora delbrueckii</i> Intra- and Extra-Cellular Aromatic Amino Acids Metabolism. Journal of Agricultural and Food Chemistry, 2019, 67, 7942-7953.	2.4	25
21	Multivariate characterisation of Italian monovarietal red wines using MIR spectroscopy. Oeno One, 2019, 53, .	0.7	16
22	LC-MS Untargeted Protocol for the Analysis of Wine. Methods in Molecular Biology, 2018, 1738, 225-235.	0.4	8
23	The impact of SO2 on wine flavanols and indoles in relation to wine style and age. Scientific Reports, 2018, 8, 858.	1.6	51
24	Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta, 2017, 246, 281-297.	1.6	74
25	Discovery of A-type procyanidin dimers in yellow raspberries by untargeted metabolomics and correlation based data analysis. Metabolomics, 2016, 12, 144.	1.4	6
26	Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biology, 2016, 16, 67.	1.6	269
27	Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. Journal of Chromatography A, 2016, 1429, 155-165.	1.8	67
28	Studying the effect of storage conditions on the metabolite content of red wine using HILIC LC–MS based metabolomics. Food Chemistry, 2016, 197, 1331-1340.	4.2	52
29	Influence of Storage Conditions on the Composition of Red Wines. ACS Symposium Series, 2015, , 29-49.	0.5	16
30	Do white grapes really exist?. Food Research International, 2015, 69, 21-25.	2.9	35
31	MetaDB a Data Processing Workflow in Untargeted MS-Based Metabolomics Experiments. Frontiers in Bioengineering and Biotechnology, 2014, 2, 72.	2.0	29
32	Analysis of the phenolic composition of fungusâ€resistant grape varieties cultivated in Italy and Germany using UHPLCâ€MS/MS. Journal of Mass Spectrometry, 2014, 49, 860-869.	0.7	58
33	The influence of storage on the "chemical age―of red wines. Metabolomics, 2014, 10, 816-832.	1.4	84
34	Early <i>versus</i> late leaf removal strategies for Pinot Noir (<i>Vitis vinifera</i> L.): effect on colourâ€related phenolics in young wines following alcoholic fermentation. Journal of the Science of Food and Agriculture, 2013, 93, 3670-3681.	1.7	30
35	Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. International Journal of Molecular Sciences, 2013, 14, 19651-19669.	1.8	266
36	Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics. Rapid Communications in Mass Spectrometry, 2013, 27, 2425-2431.	0.7	25

#	Article	IF	CITATIONS
37	In Vitro Synergistic Anti-yeast Activity between Galloyl Derivatives and Amphotericin B. Natural Products Journal, 2013, 3, 131-139.	0.1	1
38	Hydrolyzable tannin analysis in food. Food Chemistry, 2012, 135, 1708-1717.	4.2	152
39	A Metabolomic Approach to the Study of Wine Micro-Oxygenation. PLoS ONE, 2012, 7, e37783.	1.1	80
40	Study of Sangiovese Wines Pigment Profile by UHPLC-MS/MS. Journal of Agricultural and Food Chemistry, 2012, 60, 10461-10471.	2.4	84
41	LC-MS based global metabolite profiling of grapes: solvent extraction protocol optimisation. Metabolomics, 2012, 8, 175-185.	1.4	72
42	Identification and quantification of polyphenolic compounds from okra seeds and skins. Food Chemistry, 2008, 110, 1041-1045.	4.2	169
43	Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry. Food Chemistry, 2008, 109, 219-226.	4.2	103
44	Monoâ€galloyl glucose derivatives are potent poly(ADPâ€ribose) glycohydrolase (PARG) inhibitors and partially reduce PARPâ€1â€dependent cell death. British Journal of Pharmacology, 2008, 155, 1235-1249.	2.7	39
45	Pressurized solvent extraction and monolithic column-HPLC/DAD analysis of anthocyanins in red cabbage. Talanta, 2008, 74, 1218-1223.	2.9	106
46	Antimicrobial and Antiviral Activity of Hydrolysable Tannins. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1179-1187.	1.1	241
47	Hydrolyzable Tannins with the Hexahydroxydiphenoyl Unit and the m-Depsidic Link:  HPLC-DAD-MS Identification and Model Synthesis. Journal of Agricultural and Food Chemistry, 2007, 55, 48-55.	2.4	45
48	O-Methylglucogalloyl esters: Synthesis and evaluation of their antimycotic activity. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 4000-4003.	1.0	13
49	Artificial aging of wines using oak chips. Food Chemistry, 2004, 86, 563-570.	4.2	118