
Xinglu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6882971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Injection Routes on the Biodistribution, Clearance, and Tumor Uptake of Carbon Dots. ACS Nano, 2013, 7, 5684-5693.	14.6	332
2	Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery. Biomaterials, 2013, 34, 1772-1780.	11.4	147
3	Long-term multimodal imaging of tumor draining sentinel lymph nodes using mesoporous silica-based nanoprobes. Biomaterials, 2012, 33, 4370-4378.	11.4	129
4	Biomimetic Design of Mitochondriaâ€Targeted Hybrid Nanozymes as Superoxide Scavengers. Advanced Materials, 2021, 33, e2006570.	21.0	115
5	Photostimulable Near-Infrared Persistent Luminescent Nanoprobes for Ultrasensitive and Longitudinal Deep-Tissue Bio-Imaging. Theranostics, 2014, 4, 1112-1122.	10.0	104
6	Protein nanocages that penetrate airway mucus and tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6595-E6602.	7.1	102
7	Design Considerations of Iron-Based Nanoclusters for Noninvasive Tracking of Mesenchymal Stem Cell Homing. ACS Nano, 2014, 8, 4403-4414.	14.6	89
8	Carbonâ€Dotâ€Based Twoâ€Photon Visible Nanocarriers for Safe and Highly Efficient Delivery of siRNA and DNA. Advanced Healthcare Materials, 2014, 3, 1203-1209.	7.6	87
9	Mucus-penetrating budesonide nanosuspension enema for local treatment of inflammatory bowel disease. Biomaterials, 2018, 185, 97-105.	11.4	74
10	Hypoxia-tropic Protein Nanocages for Modulation of Tumor- and Chemotherapy-Associated Hypoxia. ACS Nano, 2019, 13, 236-247.	14.6	64
11	Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discovery, 2022, 8, 40.	6.7	62
12	Hypoxia-tropic nanozymes as oxygen generators for tumor-favoring theranostics. Biomaterials, 2020, 230, 119635.	11.4	61
13	Multiplex Imaging of an Intracellular Proteolytic Cascade by using a Broadâ€6pectrum Nanoquencher. Angewandte Chemie - International Edition, 2012, 51, 1625-1630.	13.8	60
14	A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo. Nature Protocols, 2014, 9, 1900-1915.	12.0	44
15	Prediction and Design of Nanozymes using Explainable Machine Learning. Advanced Materials, 2022, 34, e2201736.	21.0	42
16	Particle-based artificial three-dimensional stem cell spheroids for revascularization of ischemic diseases. Science Advances, 2020, 6, eaaz8011.	10.3	40
17	Noninvasive Dynamic Imaging of Tumor Early Response to Nanoparticle-mediated Photothermal Therapy. Theranostics, 2015, 5, 1444-1455.	10.0	29
18	Modular Assembly of Tumorâ€Penetrating and Oligomeric Nanozyme Based on Intrinsically Selfâ€Assembling Protein Nanocages. Advanced Materials, 2021, 33, e2103128.	21.0	27

XINGLU HUANG

#	Article	IF	CITATIONS
19	Biomimetic Design of Artificial Hybrid Nanocells for Boosted Vascular Regeneration in Ischemic Tissues. Advanced Materials, 2022, 34, e2110352.	21.0	27
20	Bioorthogonal catalytic nanozyme-mediated lysosomal membrane leakage for targeted drug delivery. Theranostics, 2022, 12, 1132-1147.	10.0	24
21	Nanozyme-Powered Giant Unilamellar Vesicles for Mimicry and Modulation of Intracellular Oxidative Stress. ACS Applied Materials & amp; Interfaces, 2021, 13, 21087-21096.	8.0	15
22	Combining Doxorubicin-Conjugated Polymeric Nanoparticles and 5-Aminolevulinic Acid for Enhancing Radiotherapy against Lung Cancer. Bioconjugate Chemistry, 2022, 33, 654-665.	3.6	11
23	Protein corona-coated immunomagnetic nanoparticles with enhanced isolation of circulating tumor cells. Nanoscale, 2022, 14, 8474-8483.	5.6	8
24	Insight into the Assembling Mechanism of <i>Cryptococcus</i> Capsular Glucuronoxylomannan Based on Molecular Dynamics Simulations. ACS Omega, 2020, 5, 29351-29356.	3.5	2
25	A Novel Model System for Understanding Anticancer Activity of Hypoxia-Activated Prodrugs. Molecular Pharmaceutics, 2020, 17, 2072-2082.	4.6	2
26	Gene Therapy: Carbon-Dot-Based Two-Photon Visible Nanocarriers for Safe and Highly Efficient Delivery of siRNA and DNA (Adv. Healthcare Mater. 8/2014). Advanced Healthcare Materials, 2014, 3, 1348-1348.	7.6	0