
Josep Vendrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6882838/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization, Recombinant Production and Structure-Function Analysis of NvCI, A Picomolar Metallocarboxypeptidase Inhibitor from the Marine Snail Nerita versicolor. Marine Drugs, 2019, 17, 511.	2.2	4
2	Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. Journal of Medicinal Chemistry, 2019, 62, 1917-1931.	2.9	8
3	Discovery of Mechanism-Based Inactivators for Human Pancreatic Carboxypeptidase A from a Focused Synthetic Library. ACS Medicinal Chemistry Letters, 2017, 8, 1122-1127.	1.3	8
4	A functional and structural study of the major metalloprotease secreted by the pathogenic fungus <i>Aspergillus fumigatus</i> . Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1946-1957.	2.5	22
5	Carboxypeptidase B. , 2013, , 1324-1329.		4
6	Insect Gut Carboxypeptidase 3. , 2013, , 1370-1375.		0
7	Linking amyloid protein aggregation and yeast survival. Molecular BioSystems, 2011, 7, 1121.	2.9	26
8	Structural and Functional Analysis of the Complex between Citrate and the Zinc Peptidase Carboxypeptidase A. Enzyme Research, 2011, 2011, 1-8.	1.8	11
9	Analysis of a new crystal form of procarboxypeptidase B: Further insights into the catalytic mechanism. Biopolymers, 2010, 93, 178-185.	1.2	11
10	Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics, 2010, 10, 4172-4185.	1.3	23
11	The Xâ€Ray Structure of Carboxypeptidase A Inhibited by a Thiirane Mechanismâ€Based Inhibitor. Chemical Biology and Drug Design, 2010, 75, 29-34.	1.5	10
12	Progress in metallocarboxypeptidases and their small molecular weight inhibitors. Biochimie, 2010, 92, 1484-1500.	1.3	41
13	Aromatic Organic Compounds as Scaffolds for Metallocarboxypeptidase Inhibitor Design. Chemical Biology and Drug Design, 2009, 73, 75-82.	1.5	4
14	A new type of five-membered heterocyclic inhibitors of basic metallocarboxypeptidases. European Journal of Medicinal Chemistry, 2009, 44, 3266-3271.	2.6	7
15	Cyclobutane-containing peptides: Evaluation as novel metallocarboxypeptidase inhibitors and modelling of their mode of action. Bioorganic and Medicinal Chemistry, 2009, 17, 3824-3828.	1.4	42
16	Design, Selection, and Characterization of Thioflavin-Based Intercalation Compounds with Metal Chelating Properties for Application in Alzheimer's Disease. Journal of the American Chemical Society, 2009, 131, 1436-1451.	6.6	196
17	Direct interaction between a human digestive protease and the mucoadhesive poly(acrylic acid). Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 784-791.	2.5	14
18	Thioxophosphoranyl aryl- and heteroaryloxiranes as the representants of a new class of metallocarboxypeptidase inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 4823-4828.	1.4	8

JOSEP VENDRELL

#	Article	IF	CITATIONS
19	The Crystal Structure of Thrombin-activable Fibrinolysis Inhibitor (TAFI) Provides the Structural Basis for Its Intrinsic Activity and the Short Half-life of TAFIa. Journal of Biological Chemistry, 2008, 283, 29416-29423.	1.6	31
20	Metallocarboxypeptidases: Emerging Drug Targets in Biomedicine. Current Pharmaceutical Design, 2007, 13, 347-364.	0.9	12
21	Metallocarboxypeptidases: Emerging Drug Targets in Biomedicine. Current Pharmaceutical Design, 2007, 13, 349-366.	0.9	95
22	Caught after the Act:Â A Human A-Type Metallocarboxypeptidase in a Product Complex with a Cleaved Hexapeptideâ€. Biochemistry, 2007, 46, 6921-6930.	1.2	20
23	lle-Phe Dipeptide Self-Assembly: Clues to Amyloid Formation. Biophysical Journal, 2007, 92, 1732-1741.	0.2	129
24	Self-assembly of human latexin into amyloid-like oligomers. BMC Structural Biology, 2007, 7, 75.	2.3	6
25	Structural and functional characterization of binding sites in metallocarboxypeptidases based on Optimal Docking Area analysis. Proteins: Structure, Function and Bioinformatics, 2007, 68, 131-144.	1.5	10
26	AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics, 2007, 8, 65.	1.2	845
27	Response of the digestive system of Helicoverpa zea to ingestion of potato carboxypeptidase inhibitor and characterization of an uninhibited carboxypeptidase B. Insect Biochemistry and Molecular Biology, 2006, 36, 654-664.	1.2	34
28	Mutagenesis of the central hydrophobic cluster in Abeta42 Alzheimer's peptide. Side-chain properties correlate with aggregation propensities. FEBS Journal, 2006, 273, 658-668.	2.2	164
29	Detailed molecular comparison between the inhibition mode of A/B-type carboxypeptidases in the zymogen state and by the endogenous inhibitor latexin. Cellular and Molecular Life Sciences, 2005, 62, 1996-2014.	2.4	19
30	Prediction of "hot spots" of aggregation in disease-linked polypeptides. BMC Structural Biology, 2005, 5, 18.	2.3	173
31	Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16602-16607.	3.3	64
32	Structure of human carboxypeptidase A4 with its endogenous protein inhibitor, latexin. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3978-3983.	3.3	89
33	Human kallikrein 6 activity is regulated via an autoproteolytic mechanism of activation/inactivation. Biological Chemistry, 2004, 385, 517-24.	1.2	62
34	Secondary Binding Site of the Potato Carboxypeptidase Inhibitor. Contribution to Its Structure, Folding, and Biological Properties. Biochemistry, 2004, 43, 7973-7982.	1.2	18
35	Amyloid Fibril Formation by a Partially Structured Intermediate State of α-Chymotrypsin. Journal of Molecular Biology, 2004, 342, 321-331.	2.0	206
36	Carboxypeptidase B. , 2004, , 831-833.		1

JOSEP VENDRELL

#	Article	IF	CITATIONS
37	Procarboxypeptidase A from the insect pestHelicoverpa armigeraand its derived enzyme. FEBS Journal, 2003, 270, 3026-3035.	0.2	27
38	NMR solution structure of the activation domain of human procarboxypeptidase A2. Protein Science, 2003, 12, 296-305.	3.1	9
39	Major Kinetic Traps for the Oxidative Folding of Leech Carboxypeptidase Inhibitorâ€. Biochemistry, 2003, 42, 6754-6761.	1.2	26
40	The Unfolding Pathway of Leech Carboxypeptidase Inhibitor. Journal of Biological Chemistry, 2002, 277, 17538-17543.	1.6	19
41	Identification and Characterization of Three Members of the Human Metallocarboxypeptidase Gene Family. Journal of Biological Chemistry, 2002, 277, 14954-14964.	1.6	69
42	Human Procarboxypeptidase B: Three-dimensional Structure and Implications for Thrombin-activatable Fibrinolysis Inhibitor (TAFI). Journal of Molecular Biology, 2002, 321, 537-547.	2.0	66
43	Crystal structure of a novel Mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera. Journal of Molecular Biology, 2001, 313, 629-638.	2.0	42
44	The Crystal Structure of the Inhibitor-complexed Carboxypeptidase D Domain II and the Modeling of Regulatory Carboxypeptidases. Journal of Biological Chemistry, 2001, 276, 16177-16184.	1.6	71
45	Structure of a novel leech carboxypeptidase inhibitor determined free in solution and in complex with human carboxypeptidase A2. Nature Structural Biology, 2000, 7, 322-328.	9.7	71
46	Metallocarboxypeptidases and their protein inhibitors. BBA - Proteins and Proteomics, 2000, 1477, 284-298.	2.1	129
47	Mapping the Pro-region of Carboxypeptidase B by Protein Engineering. Journal of Biological Chemistry, 1999, 274, 19925-19933.	1.6	45
48	Carboxypeptidases. , 1999, , 13-34.		8
49	Cutting at the right place. The importance of selective limited proteolysis in the activation of proproteinase E. FEBS Journal, 1998, 251, 839-844.	0.2	7
50	Comparative Analysis of the Sequences and Three-Dimensional Models of Human Procarboxypeptidases A1, A2 and B. Biological Chemistry, 1998, 379, 149-156.	1.2	13
51	A Carboxypeptidase Inhibitor from the Medical Leech Hirudo medicinalis. Journal of Biological Chemistry, 1998, 273, 32927-32933.	1.6	78
52	Overexpression of Human Procarboxypeptidase A2 in Pichia pastoris and Detailed Characterization of Its Activation Pathway. Journal of Biological Chemistry, 1998, 273, 3535-3541.	1.6	52
53	Characterisation and preliminary X-ray diffraction analysis of human pancreatic procarboxypeptidase A2. FEBS Letters, 1997, 420, 7-10.	1.3	19
54	The activation pathway of procarboxypeptidase B from porcine pancreas: Participation of the active enzyme in the proteolytic processing. Protein Science, 1995, 4, 1792-1800.	3.1	27

JOSEP VENDRELL

#	Article	IF	CITATIONS
55	The Sequence and Conformation of Human Pancreatic Procarboxypeptidase A2. Journal of Biological Chemistry, 1995, 270, 6651-6657.	1.6	31
56	Procarboxypeptidase in rat pancreas Overall characterization and comparison of the activation processes. FEBS Journal, 1994, 222, 55-64.	0.2	22
57	Advances in metallo-procarboxypeptidases. , 1994, , 19-27.		0
58	Advances in metallo-procarboxypeptidases. Emerging details on the inhibition mechanism and on the activation process. FEBS Journal, 1993, 211, 381-389.	0.2	77
59	Pancreatic Procarboxypeptidases: Their Activation Processes Related to the Structural Features of the Zymogens and Activation Segments. Biological Chemistry Hoppe-Seyler, 1992, 373, 387-392.	1.4	12
60	Differential scanning calorimetric study of carboxypeptidase B, procarboxypeptidase B and its globular activation domain. FEBS Journal, 1991, 200, 663-670.	0.2	46
61	Sequence-Specific 1H NMR Assignments and Determination of the Secondary Structure for the Activation Domain Isolated from Pancreatic Procarboxypeptidase B. Biochemistry, 1990, 29, 7515-7522.	1.2	19
62	Autolysis of proproteinase E in bovine procarboxypeptidase A ternary complex gives rise to subunit III. FEBS Letters, 1990, 277, 37-41.	1.3	19
63	The separation of pancreatic procarboxypeptidases by high-performance liquid chromatography and chromatofocusing. Journal of Chromatography A, 1989, 481, 233-243.	1.8	7
64	Enzymatic and chemical fragmentation of proteins: A simple laboratory visualization of differences in yield, specificity and applicability. Biochemical Education, 1988, 16, 174-176.	0.1	2
65	Complete amino acid analysis of proteins by dabsyl derivatization and reversed-phase liquid chromatogrphy. Journal of Chromatography A, 1986, 358, 401-413.	1.8	88
66	Nuclear magnetic resonance studies on the isolated activation segment from porcine pancreatic procarboxypeptidase A. Biochemical Society Transactions, 1985, 13, 344-345.	1.6	0
67	Isolation and re-association of the subunits from the pro-(carboxypeptidase A)–pro-(proteinase E) binary complex from pig pancreas. Biochemical Journal, 1982, 205, 449-452.	1.7	17