Mazin Auny Mahdi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6882210/publications.pdf

Version: 2024-02-01

331670 345221 1,326 45 21 citations h-index papers

g-index 45 45 45 1521 docs citations times ranked citing authors all docs

36

#	Article	IF	Citations
1	Photocatalytic activity and photoelectrochemical properties of Ag/ZnO core/shell nanorods under low-intensity white light irradiation. Nanotechnology, 2021, 32, 195706.	2.6	24
2	Preparation of silver nanoparticles as antibacterial agents through DNA damage. Materials Technology, 2019, 34, 867-879.	3.0	20
3	Fabrication of a high sensitivity and fast response self-powered photosensor based on a core-shell silicon nanowire homojunction. Superlattices and Microstructures, 2018, 116, 27-35.	3.1	9
4	A Self-Powered Heterojunction Photodetector Based on a PbS Nanostructure Grown on Porous Silicon Substrate. Silicon, 2018, 10, 403-411.	3.3	15
5	High-performance all-optical limiting based on nonlinear refraction of metal-doped PbS/PVA freestanding nanocomposite films. Optik, 2018, 174, 580-590.	2.9	13
6	Fabrication and Characterization of Solar Cells Based on Silicon Nanowire Homojunctions. Silicon, 2017, 9, 17-23.	3.3	8
7	All-photonic switching based on selective input pump polarization states in Fe-doped PbS/PVA freestanding nanocomposite films. Journal Physics D: Applied Physics, 2017, 50, 135103.	2.8	8
8	Fabrication and characterization of nanowalls CdS/dye sensitized solar cells. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 104-108.	2.7	13
9	Fabrication of Cu2O nanocrystalline thin films photosensor prepared by RF sputtering technique. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 132-138.	2.7	19
10	Fabrication and Characterization of Porous CdS/Dye Sensitized Solar Cells. Journal of Solar Energy, 2016, 2016, 1-7.	0.8	13
11	Structural, characterization and electrical properties of AgPbmSbTem+2 compounds synthesized through a solid-state microwave technique. International Journal of Hydrogen Energy, 2016, 41, 5048-5056.	7.1	4
12	Solvothermal preparation and characterization of ternary alloy CdS Se1â° nanowires. Optik, 2016, 127, 1962-1966.	2.9	3
13	Preparation and characterization of ZnxCd1â^'xS ternary alloys micro/nanostructures grown by thermal evaporation. Materials Research Express, 2015, 2, 016501.	1.6	3
14	Growth and characterization of silicon nanowires catalyzed by Zn metal via Pulsed Plasma-Enhanced Chemical Vapor Deposition. Superlattices and Microstructures, 2014, 68, 90-100.	3.1	12
15	Fabrication and characterization of nanocrystalline CdS thin film-based optical sensor grown via microwave-assisted chemical bath deposition. Superlattices and Microstructures, 2014, 67, 8-16.	3.1	43
16	Solvothermal growth of single-crystal CdS nanowires. Bulletin of Materials Science, 2014, 37, 337-345.	1.7	10
17	Optical properties of CdS micro/nanocrystalline structures prepared via a thermal evaporation method. Materials Science in Semiconductor Processing, 2014, 26, 87-92.	4.0	24
18	Preparation and characterization of silicon nanowires catalyzed by aluminum. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 48, 21-28.	2.7	7

#	Article	IF	CITATIONS
19	Structural and optical properties of Au-catalyzed SiNWs grown using pulsed plasma-enhanced chemical vapour deposition. Superlattices and Microstructures, 2013, 61, 134-145.	3.1	14
20	Fabrication of ZnO nanorod/p-GaN high-brightness UV LED by microwave-assisted chemical bath deposition with Zn(OH)2–PVA nanocomposites as seed layer. Optical Materials, 2013, 35, 1035-1041.	3.6	24
21	Growth and characterization of CdS single-crystalline micro-rod photodetector. Superlattices and Microstructures, 2013, 54, 137-145.	3.1	40
22	Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. Journal of Alloys and Compounds, 2013, 546, 107-111.	5.5	84
23	A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays. Sensors and Actuators B: Chemical, 2013, 176, 360-367.	7.8	142
24	PbS nanocrystal solar cells fabricated using microwave-assisted chemical bath deposition. International Journal of Hydrogen Energy, 2013, 38, 807-815.	7.1	30
25	Structural and optical properties of nanocrystalline lead sulfide thin films prepared by microwave-assisted chemical bath deposition. Materials Science in Semiconductor Processing, 2013, 16, 971-979.	4.0	20
26	Fabrication and characterisations of n-CdS/p-PbS heterojunction solar cells using microwave-assisted chemical bath deposition. Solar Energy, 2013, 89, 143-151.	6.1	60
27	Fast UV detection and hydrogen sensing by ZnO nanorod arrays grown on a flexible Kapton tape. Materials Science-Poland, 2013, 31, 180-185.	1.0	15
28	Controlling the diameter of silicon nanowires grown using a tin catalyst. Materials Science in Semiconductor Processing, 2013, 16, 15-22.	4.0	26
29	Fabrication and characterization of ZnO nanorods/p-6H–SiC heterojunction LED by microwave-assisted chemical bath deposition. Superlattices and Microstructures, 2013, 53, 31-38.	3.1	44
30	High sensitivity and fast response and recovery times in a ZnO nanorod array/ $\langle i \rangle p \langle i \rangle$ -Si self-powered ultraviolet detector. Applied Physics Letters, 2012, 101, .	3.3	90
31	A Catalyst-Free Growth of ZnO Nanowires on Si (100) Substrates: Effect of Substrate Position on Morphological, Structural and Optical Properties. ECS Journal of Solid State Science and Technology, 2012, 1, P86-P89.	1.8	25
32	Room-temperature hydrogen gas sensor with ZnO nanorod arrays grown on a quartz substrate. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 254-258.	2.7	16
33	Growth and characterization of ZnxCd1â^'xS nanoflowers by microwave-assisted chemical bath deposition. Journal of Alloys and Compounds, 2012, 541, 227-233.	5. 5	38
34	Morphology and structural properties of nano-PZT thin films deposited on unheated substrate by RF sputtering system. , 2012, , .		1
35	Synthesis and characterization of single-crystal CdS nanosheet for high-speed photodetection. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1716-1721.	2.7	67
36	Microwave assisted chemical bath deposition of vertically aligned ZnO nanorods on a variety of substrates seeded by PVA–Zn(OH)2 nanocomposites. Applied Surface Science, 2012, 258, 4467-4472.	6.1	26

#	Article	IF	CITATIONS
37	Growth of CdS nanosheets and nanowires through the solvothermal method. Journal of Crystal Growth, 2012, 359, 43-48.	1.5	44
38	Preparation of chemically deposited thin films of CdS/PbS solar cell. Superlattices and Microstructures, 2012, 52, 816-823.	3.1	39
39	Characterization of nanocrystalline PbS thin films prepared using microwave-assisted chemical bath deposition. Materials Science in Semiconductor Processing, 2012, 15, 564-571.	4.0	45
40	Structural and optical properties of nanocrystalline CdS thin films prepared using microwave-assisted chemical bath deposition. Thin Solid Films, 2012, 520, 3477-3484.	1.8	97
41	New optical features to enhance solar cell performance based on porous silicon surfaces. Applied Surface Science, 2011, 257, 6112-6117.	6.1	73
42	Preparation Ag ₂ S Nanorods and Nanoparticles via a Simple Chemical Method. Advanced Materials Research, 2011, 364, 500-503.	0.3	1
43	Synthesis of ZnO Nanosheets by a Combined Electrodeposition and Illumination Method. Composite Interfaces, 2011, 18, 543-550.	2.3	3
44	Structural Properties of Nanocrystalline PbS Thin Films Prepared by Chemical Bath Deposition Method. Advanced Materials Research, 0, 364, 60-64.	0.3	11
45	Growth of Nanocrystalline PbS Thin Films by Solid-Vapor Deposition. Advanced Materials Research, 0, 620, 1-6.	0.3	3