
Jian Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881957/publications.pdf Version: 2024-02-01

LIAN XIE

#	Article	IF	CITATIONS
1	Forging Inspired Processing of Sodiumâ€Fluorinated Graphene Composite as Dendriteâ€Free Anode for Longâ€Life Na–CO ₂ Cells. Energy and Environmental Materials, 2022, 5, 572-581.	7.3	8
2	High-performance Ni/Fe-codoped manganese hexacyanoferrate by scale-up synthesis for practical Na-ion batteries. Materials Today Sustainability, 2022, 18, 100113.	1.9	6
3	Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Materials, 2022, 48, 192-204.	9.5	43
4	Cross-linked binder enables reversible volume changes of Si-based anodes from sustainable photovoltaic waste silicon. Materials Today Sustainability, 2022, 19, 100178.	1.9	8
5	Hexacyanoferrateâ€Type Prussian Blue Analogs: Principles and Advances Toward Highâ€Performance Sodium and Potassium Ion Batteries. Advanced Energy Materials, 2021, 11, 2000943.	10.2	217
6	Two-dimensional lithiophilic YFδ enabled lithium dendrite removal for quasi-solid-state lithium batteries. Journal of Materiomics, 2021, 7, 355-365.	2.8	7
7	Long-life Na-rich nickel hexacyanoferrate capable of working under stringent conditions. Journal of Materials Chemistry A, 2021, 9, 21228-21240.	5.2	21
8	Electrochemical Compatibility of Solidâ€State Electrolytes with Cathodes and Anodes for Allâ€Solidâ€State Lithium Batteries: A Review. Advanced Energy and Sustainability Research, 2021, 2, 2000101.	2.8	16
9	Low-cost and scalable preparation of nano-Si from photovoltaic waste silicon for high-performance Li-ion battery anode. Functional Materials Letters, 2021, 14, 2151033.	0.7	8
10	Stable cycling of LiCoO2 at 4.55ÂV enabled by combined Mg doping and surface coating of NASICON-type electrolyte. Materials Today Nano, 2021, 15, 100122.	2.3	10
11	Scale-up processing of a safe quasi-solid-state lithium battery by cathode-supported solid electrolyte coating. Materials Today Energy, 2021, 21, 100841.	2.5	13
12	Stable cycling of Prussian blue/Zn battery in a nonflammable aqueous/organic hybrid electrolyte. RSC Advances, 2021, 11, 30383-30391.	1.7	8
13	Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium–oxygen cells. Nanoscale, 2020, 12, 3424-3434.	2.8	14
14	Lithiated carbon cloth as a dendrite-free anode for high-performance lithium batteries. Sustainable Energy and Fuels, 2020, 4, 5773-5782.	2.5	11
15	A multi-layered composite assembly of Bi nanospheres anchored on nitrogen-doped carbon nanosheets for ultrastable sodium storage. Nanoscale, 2020, 12, 23682-23693.	2.8	21
16	Tiny amounts of fluorinated carbon nanotubes remove sodium dendrites for high-performance sodium–oxygen batteries. Sustainable Energy and Fuels, 2020, 4, 4108-4116.	2.5	3
17	Stable cycling of a Prussian blue-based Na/Zn hybrid battery in aqueous electrolyte with a wide electrochemical window. New Journal of Chemistry, 2020, 44, 4639-4646.	1.4	24
18	Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 515-525.	2.4	26

#	Article	IF	CITATIONS
19	Highly Efficient Carbon-Array-Supported MnO ₂ /RuO ₂ Cathodes for Lithium–Oxygen Batteries with Spatial and Induction Effects. Journal of the Electrochemical Society, 2020, 167, 160536.	1.3	4
20	Long-life Li–CO2 cells with ultrafine IrO2-decorated few-layered δ-MnO2 enabling amorphous Li2CO3 growth. Energy Storage Materials, 2019, 18, 405-413.	9.5	73
21	Bi 2 S 3 /Ketjen Black as a Highly Efficient Bifunctional Catalyst for Longâ€Cycle Lithiumâ€Oxygen Batteries. ChemElectroChem, 2019, 6, 3841-3841.	1.7	0
22	Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New Journal of Chemistry, 2019, 43, 11618-11625.	1.4	48
23	Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium–Oxygen Cells. ACS Applied Materials & Interfaces, 2019, 11, 39737-39745.	4.0	23
24	Bi ₂ S ₃ /Ketjen Black as a Highly Efficient Bifunctional Catalyst for Longâ€Cycle Lithiumâ€Oxygen Batteries. ChemElectroChem, 2019, 6, 3885-3891.	1.7	6
25	Realizing discrete growth of thin Li2O2 sheets on black phosphorus quantum dots-decorated δ-MnO2catalyst for long-life lithium–oxygen cells. Energy Storage Materials, 2019, 23, 684-692.	9.5	24
26	Superamphiphobic Porous Structure: Design and Implementation. Advanced Materials Interfaces, 2019, 6, 1801973.	1.9	5
27	Nonflammable quasi-solid-state electrolyte for stable lithium-metal batteries. RSC Advances, 2019, 9, 42183-42193.	1.7	8
28	Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2018, 25, 88-93.	2.4	20
29	Solvothermal-assisted morphology evolution of nanostructured LiMnPO 4 as high-performance lithium-ion batteries cathode. Journal of Materials Science and Technology, 2018, 34, 1544-1549.	5.6	25
30	Mechanistic insight into the synergetic catalytic effect of Pd and MnO2 for high-performance Li–O2 cells. Energy Storage Materials, 2018, 12, 8-16.	9.5	23
31	CoO microspheres and metallic Co evolved from hexagonal α-Co(OH)2 plates in a hydrothermal process for lithium storage and magnetic applications. Physical Chemistry Chemical Physics, 2018, 20, 595-604.	1.3	19
32	Ionic liquid/ether-plasticized quasi-solid-state electrolytes for long-life lithium–oxygen cells. New Journal of Chemistry, 2018, 42, 19521-19527.	1.4	4
33	Status, promises, and challenges of nanocomposite solid-state electrolytes for safe and high performance lithium batteries. Materials Today Nano, 2018, 4, 1-16.	2.3	201
34	Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorganic Chemistry Frontiers, 2018, 5, 2914-2920.	3.0	24
35	Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16121-16129.	3.2	63
36	NiCo ₂ O ₄ /MnO ₂ core/shell arrays as a binder-free catalytic cathode for high-performance lithium–oxygen cells. Inorganic Chemistry Frontiers, 2018, 5, 1707-1713.	3.0	21

#	Article	IF	CITATIONS
37	Unexpected Low-Temperature Performance of Li–O ₂ Cells with Inhibited Side Reactions. ACS Applied Materials & Interfaces, 2018, 10, 25925-25929.	4.0	6
38	Graphene-like δ-MnO ₂ decorated with ultrafine CeO ₂ as a highly efficient catalyst for long-life lithium–oxygen batteries. Journal of Materials Chemistry A, 2017, 5, 6747-6755.	5.2	51
39	Photon-generated carriers excite superoxide species inducing long-term photoluminescence enhancement of MAPbI ₃ perovskite single crystals. Journal of Materials Chemistry A, 2017, 5, 12048-12053.	5.2	34
40	Improved Na-storage cycling of amorphous-carbon-sheathed Ni3S2 arrays and investigation by in situ TEM characterization. Materials Today Energy, 2017, 5, 99-106.	2.5	22
41	Two-dimensional IrO2/MnO2 enabling conformal growth of amorphous Li2O2 for high-performance Li–O2 batteries. Energy Storage Materials, 2017, 9, 206-213.	9.5	32
42	Highly-efficient MnO2/carbon array-type catalytic cathode enabling confined Li2O2 growth for long-life Li–O2 batteries. Energy Storage Materials, 2017, 6, 164-170.	9.5	27
43	Wrinkled Graphene-Reinforced Nickel Sulfide Thin Film as High-Performance Binder-Free Anode for Sodium-Ion Battery. Journal of Materials Science and Technology, 2017, 33, 775-780.	5.6	19
44	Ni ₃ S ₂ nanosheet-anchored carbon submicron tube arrays as high-performance binder-free anodes for Na-ion batteries. Inorganic Chemistry Frontiers, 2017, 4, 131-138.	3.0	22
45	Highâ€Performance Li–O ₂ Batteries with Controlled Li ₂ O ₂ Growth in Graphene/Auâ€Nanoparticles/Auâ€Nanosheets Sandwich. Advanced Science, 2016, 3, 1500339.	5.6	45
46	Auâ€Decorated Cracked Carbon Tube Arrays as Binderâ€Free Catalytic Cathode Enabling Guided Li ₂ O ₂ Inner Growth for Highâ€Performance Liâ€O ₂ Batteries. Advanced Functional Materials, 2016, 26, 7725-7732.	7.8	45
47	Facile synthesis of hierarchical β-LiFePO4and its phase transformation to electrochemically active α-LiFePO4for Li-ion batteries. CrystEngComm, 2016, 18, 7707-7714.	1.3	6
48	Ru-decorated knitted Co ₃ O ₄ nanowires as a robust carbon/binder-free catalytic cathode for lithium–oxygen batteries. New Journal of Chemistry, 2016, 40, 6812-6818.	1.4	20
49	Scalable preparation of silicon@graphite/carbon microspheres as high-performance lithium-ion battery anode materials. RSC Advances, 2016, 6, 69882-69888.	1.7	32
50	Controlled Growth of Li ₂ O ₂ by Cocatalysis of Mobile Pd and Co ₃ O ₄ Nanowire Arrays for High-Performance Li–O ₂ Batteries. ACS Applied Materials & Interfaces, 2016, 8, 31653-31660.	4.0	26
51	Mushroom-like Au/NiCo ₂ O ₄ nanohybrids as high-performance binder-free catalytic cathodes for lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 5714-5721.	5.2	48
52	Au-nanocrystals-decorated δ-MnO ₂ as an efficient catalytic cathode for high-performance Li–O ₂ batteries. Nanoscale, 2015, 7, 9589-9596.	2.8	38
53	Facile solvothermal synthesis of ultrathin LiFe _x Mn _{1â^'x} PO ₄ nanoplates as advanced cathodes with long cycle life and superior rate capability. Journal of Materials Chemistry A, 2015, 3, 19368-19375.	5.2	35
54	Understanding Moisture and Carbon Dioxide Involved Interfacial Reactions on Electrochemical Performance of Lithium–Air Batteries Catalyzed by Gold/Manganese-Dioxide. ACS Applied Materials & Interfaces, 2015, 7, 23876-23884.	4.0	42

#	Article	IF	CITATIONS
55	Nanostructured porous RuO ₂ /MnO ₂ as a highly efficient catalyst for high-rate Li–O ₂ batteries. Nanoscale, 2015, 7, 20614-20624.	2.8	42
56	Facile synthesis of nanostructured LiMnPO ₄ as a high-performance cathode material with long cycle life and superior rate capability. RSC Advances, 2015, 5, 99632-99639.	1.7	8
57	Tips-Bundled Pt/Co ₃ O ₄ Nanowires with Directed Peripheral Growth of Li ₂ O ₂ as Efficient Binder/Carbon-Free Catalytic Cathode for Lithium–Oxygen Battery. ACS Catalysis, 2015, 5, 241-245.	5.5	69
58	Few‣ayered SnS ₂ on Few‣ayered Reduced Graphene Oxide as Na″on Battery Anode with Ultralong Cycle Life and Superior Rate Capability. Advanced Functional Materials, 2015, 25, 481-489.	7.8	391
59	Direct Growth of Flowerâ€Like Î′â€MnO ₂ on Threeâ€Dimensional Graphene for Highâ€Performance Rechargeable Liâ€O ₂ Batteries. Advanced Energy Materials, 2014, 4, 1301960.	10.2	154
60	Facile Synthesis of NiFe2O4/Reduced Graphene Oxide Hybrid with Enhanced Electrochemical Lithium Storage Performance. Journal of Materials Science and Technology, 2014, 30, 1078-1083.	5.6	22
61	One-pot synthesis of ultrafine ZnFe2O4 nanocrystals anchored on graphene for high-performance Li and Li-ion batteries. RSC Advances, 2014, 4, 7703.	1.7	41
62	Hollow nano silicon prepared by a controlled template direction and magnesiothermic reduction reaction as anode for lithium ion batteries. New Journal of Chemistry, 2014, 38, 4177.	1.4	9
63	From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4, 17902.	1.7	28
64	Nitrogen-doped reduced graphene oxide for high-performance flexible all-solid-state micro-supercapacitors. Journal of Materials Chemistry A, 2014, 2, 18125-18131.	5.2	158
65	Controllable synthesis of high-performance LiMnPO ₄ nanocrystals by a facile one-spot solvothermal process. Journal of Materials Chemistry A, 2014, 2, 10581-10588.	5.2	58
66	Ordered LiMPO4 (M = Fe, Mn) nanorods synthesized from NH4MPO4·H2O microplates by stress involved ion exchange for Li-ion batteries. CrystEngComm, 2014, 16, 2239.	1.3	13
67	Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route. Journal of Power Sources, 2014, 247, 204-212.	4.0	74
68	Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries. Electrochimica Acta, 2014, 135, 94-100.	2.6	74
69	Electrochemical performance of LiMn2O4 microcubes prepared by a self-templating route. Journal of Solid State Electrochemistry, 2013, 17, 2589-2594.	1.2	8
70	Controllable synthesis of hollow α-Fe2O3 nanostructures, their growth mechanism, and the morphology-reserved conversion to magnetic Fe3O4/C nanocomposites. RSC Advances, 2013, 3, 19097.	1.7	14
71	Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. RSC Advances, 2013, 3, 19409.	1.7	58
72	Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Advances, 2013, 3, 3899.	1.7	78

#	Article	IF	CITATIONS
73	Facile synthesis of ultrafine CoSn ₂ nanocrystals anchored on graphene by one-pot route and the improved electrochemical Li-storage properties. New Journal of Chemistry, 2013, 37, 474-480.	1.4	34
74	LiMn ₂ O ₄ microspheres secondary structure of nanoparticles/plates as cathodes for Li-ion batteries. Journal of Materials Research, 2013, 28, 1343-1348.	1.2	7
75	Facile synthesis of layered Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance anode for Li-ion batteries. Journal of Power Sources, 2013, 229, 6-11.	4.0	63
76	Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries. Materials Research Bulletin, 2013, 48, 4791-4796.	2.7	26
77	Facile synthesis of C–Fe3O4–C core–shell nanotubes by a self-templating route and the application as a high-performance anode for Li-ion batteries. RSC Advances, 2013, 3, 6787.	1.7	35
78	Co(OH)2/graphene sheet-on-sheet hybrid as high-performance electrochemical pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 2013, 17, 1159-1165.	1.2	21
79	Enhanced thermoelectric properties of p-type CoSb3/graphene nanocomposite. Journal of Materials Chemistry A, 2013, 1, 13111.	5.2	109
80	Reduced graphene oxide induced confined growth of PbTe crystals and enhanced electrochemical Li-storage properties. RSC Advances, 2013, 3, 23612.	1.7	12
81	Electron and phonon transport in Co-doped FeV0.6Nb0.4Sb half-Heusler thermoelectric materials. Journal of Applied Physics, 2013, 114, 134905.	1.1	54
82	Graphene-induced confined crystal growth of octahedral Zn ₂ SnO ₄ and its improved Li-storage properties. Journal of Materials Research, 2012, 27, 3096-3102.	1.2	11
83	Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 3915-3921.	1.2	17
84	Self-assembly of a ZnFe2O4/graphene hybrid and its application as a high-performance anode material for Li-ion batteries. New Journal of Chemistry, 2012, 36, 2236.	1.4	62
85	Electrochemical performance of TiO ₂ /carbon nanotubes nanocomposite prepared by an in situ route for Li-ion batteries. Journal of Materials Research, 2012, 27, 417-423.	1.2	12
86	Self-assembly of a CoFe2O4/graphene sandwich by a controllable and general route: towards a high-performance anode for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 19738.	6.7	122
87	Enhanced phonon scattering by mass and strain field fluctuations in Nb substituted FeVSb half-Heusler thermoelectric materials. Journal of Applied Physics, 2012, 112, .	1.1	82
88	RAPID SYNTHESIS OF CoSb3/GRAPHENE NANOCOMPOSITES BY ONE-POT SOLVOTHERMAL ROUTE AND THEIR ELECTROCHEMICAL PROPERTIES. Functional Materials Letters, 2012, 05, 1250002.	0.7	0
89	One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 542-548.	2.4	2
90	Oleic acid-assisted preparation of LiMnPO4 and its improved electrochemical performance by Co doping. Journal of Solid State Electrochemistry, 2012, 16, 1271-1277.	1.2	26

#	Article	IF	CITATIONS
91	Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochimica Acta, 2012, 66, 271-278.	2.6	125
92	Self-assembly of Co Sb-nanocrystal/graphene hybrid nanostructure with improved Li-storage properties via a facile in situ solvothermal route. Journal of Power Sources, 2012, 202, 276-283.	4.0	17
93	Double-shelled hollow microspheres of LiMn2O4 for high-performance lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 9475.	6.7	96
94	Electrochemical kinetics of nanosized Ag and Ag2O thin films prepared by radio frequency magnetron sputtering. Journal of Solid State Electrochemistry, 2011, 15, 2031-2039.	1.2	1
95	Synthesis and electrochemical performance of YF3-coated LiMn2O4 cathode materials for Li-ion batteries. Rare Metals, 2011, 30, 39-43.	3.6	10
96	Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries. Advanced Functional Materials, 2011, 21, 348-355.	7.8	327
97	One-pot synthesis of core–shell structured Sn/carbon nanotube by chemical vapor deposition and its Li-storage properties. Journal of Materials Research, 2011, 26, 2719-2724.	1.2	4
98	Amorphous LiCoO2 thin films on Li1+x+yAlxTi2â^'xSiyP3â^'yO12 prepared by radio frequency magnetron sputtering for all-solid-state Li-ion batteries. Electrochimica Acta, 2010, 55, 5440-5445.	2.6	6
99	Electrochemical performance of all-solid-state Li batteries based LiMn0.5Ni0.5O2 cathode and NASICON-type electrolyte. Journal of Power Sources, 2010, 195, 8341-8346.	4.0	9
100	An amorphous LiCo1/3Mn1/3Ni1/3O2 thin film deposited on NASICON-type electrolyte for all-solid-state Li-ion batteries. Journal of Power Sources, 2010, 195, 5780-5783.	4.0	22
101	Preparation and characterization of LiFePO4/graphene-oxide composites. Materials Research Society Symposia Proceedings, 2010, 1266, 30201.	0.1	0
102	Enhanced cycle stability of spinel LiMn2O4 by a melting impregnation method. Frontiers of Materials Science in China, 2008, 2, 291-294.	0.5	2
103	Low temperature solvothermal synthesis of nanosized NiSb as a Li-ion battery anode material. Journal of Alloys and Compounds, 2007, 441, 231-235.	2.8	29
104	Electrochemical performance of nanostructured amorphous Co3Sn2 intermetallic compound prepared by a solvothermal route. Journal of Power Sources, 2007, 164, 386-389.	4.0	34
105	Electrochemical performance of CoSb3/MWNTs nanocomposite prepared by in situ solvothermal synthesis. Electrochimica Acta, 2005, 50, 2725-2731.	2.6	28
106	Improvement of Electrochemical Performances of CoSb[sub 3] Anode by Using Nanosized Particles. Journal of the Electrochemical Society, 2005, 152, A601.	1.3	17
107	Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route. Journal of Alloys and Compounds, 2005, 393, 283-286.	2.8	29
108	Electrochemical Performances of Nanosized Intermetallic Compound CoSb[sub 2] Prepared by the Solvothermal Route. Journal of the Electrochemical Society, 2004, 151, A1905.	1.3	19

#	Article	IF	CITATIONS
109	Electrochemical lithium intercalation in CoSb3 compound. Journal of Materials Science Letters, 2003, 22, 221-224.	0.5	3
110	Preparation and Li-storage properties of SnSb/graphene hybrid nanostructure by a facile one-step solvothermal route. International Journal of Smart and Nano Materials, 0, , 1-11.	2.0	7