Robert A Saxton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881874/publications.pdf

Version: 2024-02-01

623188 996533 8,035 15 14 15 citations g-index h-index papers 15 15 15 13650 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017, 168, 960-976.	13.5	4,800
2	Sestrin2 is a leucine sensor for the mTORC1 pathway. Science, 2016, 351, 43-48.	6.0	901
3	The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway. Cell, 2016, 165, 153-164.	13.5	598
4	The Sestrins Interact with GATOR2 to Negatively Regulate the Amino-Acid-Sensing Pathway Upstream of mTORC1. Cell Reports, 2014, 9, 1-8.	2.9	394
5	SAMTOR is an <i>S</i> -adenosylmethionine sensor for the mTORC1 pathway. Science, 2017, 358, 813-818.	6.0	384
6	Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science, 2016, 351, 53-58.	6.0	340
7	Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature, 2016, 536, 229-233.	13.7	224
8	Topological control of cytokine receptor signaling induces differential effects in hematopoiesis. Science, 2019, 364, .	6.0	89
9	Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science, 2021, 371, .	6.0	79
10	Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Science, 2022, 376, 163-169.	6.0	78
11	Dimerization quality control ensures neuronal development and survival. Science, 2018, 362, .	6.0	56
12	The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity, 2021, 54, 660-672.e9.	6.6	36
13	Structure of the nutrient-sensing hub GATOR2. Nature, 2022, 607, 610-616.	13.7	32
14	The apo-structure of the leucine sensor Sestrin2 is still elusive. Science Signaling, 2016, 9, ra92.	1.6	21
15	Cryoâ€EM structure of the ILâ€10 receptor complex provides a blueprint for ligand engineering. FEBS Journal, 2022, 289, 8032-8036.	2.2	3