Christopher M Poskitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881809/publications.pdf

Version: 2024-02-01

1307366 1281743 28 484 11 7 citations h-index g-index papers 30 30 30 326 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Physical Adversarial Attack on a Robotic Arm. IEEE Robotics and Automation Letters, 2022, 7, 9334-9341.	3.3	1
2	XSS for the Masses. , 2022, , .		0
3	Incorrectness Logic for Graph Programs. Lecture Notes in Computer Science, 2021, , 81-101.	1.0	2
4	Deriving invariant checkers for critical infrastructure using axiomatic design principles. Cybersecurity, 2021, 4, .	3.1	8
5	Code integrity attestation for PLCs using black box neural network predictions. , 2021, , .		5
6	Adversarial attacks and mitigation for anomaly detectors of cyber-physical systems. International Journal of Critical Infrastructure Protection, 2021, 34, 100452.	2.9	15
7	Microservices Orchestration vs. Choreography: A Decision Framework. , 2021, , .		2
8	Securing Bring-Your-Own-Device (BYOD) Programming Exams. , 2020, , .		8
9	Towards Systematically Deriving Defence Mechanisms from Functional Requirements of Cyber-Physical Systems. , 2020, , .		1
10	Active fuzzing for testing and securing cyber-physical systems. , 2020, , .		15
11	Learning-Guided Network Fuzzing for Testing Cyber-Physical System Defences. , 2019, , .		35
12	A semantics comparison workbench for a concurrent, asynchronous, distributed programming language. Formal Aspects of Computing, 2018, 30, 163-192.	1.4	2
13	Learning from Mutants: Using Code Mutation to Learn and Monitor Invariants of a Cyber-Physical System. , 2018, , .		85
14	SafeGPU: Contract- and library-based GPGPU for object-oriented languages. Computer Languages, Systems and Structures, 2017, 48, 68-88.	1.4	2
15	Anomaly Detection for a Water Treatment System Using Unsupervised Machine Learning. , 2017, , .		186
16	An Interference-Free Programming Model for Network Objects. Lecture Notes in Computer Science, 2016, , 227-244.	1.0	2
17	Towards Learning and Verifying Invariants of Cyber-Physical Systems by Code Mutation. Lecture Notes in Computer Science, 2016, , 155-163.	1.0	15
18	A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs. Lecture Notes in Computer Science, 2016, , 31-48.	1.0	3

#	Article	IF	Citations
19	Contract-based general-purpose GPU programming. ACM SIGPLAN Notices, 2016, 51, 75-84.	0.2	3
20	Contract-based general-purpose GPU programming., 2015,,.		4
21	Verifying Monadic Second-Order Properties of Graph Programs. Lecture Notes in Computer Science, 2014, , 33-48.	1.0	16
22	Applying Search in an Automatic Contract-Based Testing Tool. Lecture Notes in Computer Science, 2013, , 318-323.	1.0	1
23	Hoare-Style Verification of Graph Programs. Fundamenta Informaticae, 2012, 118, 135-175.	0.3	33
24	Verification of Graph Programs. Lecture Notes in Computer Science, 2012, , 420-422.	1.0	9
25	A Hoare Calculus for Graph Programs. Lecture Notes in Computer Science, 2010, , 139-154.	1.0	12
26	Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 181, 32-47.	0.8	4
27	The AutoProof Verifier: Usability by Non-Experts and on Standard Code. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 187, 42-55.	0.8	8
28	Steps Before Syntax: Helping Novice Programmers Solve Problems using the PCDIT Framework. , 0, , .		1