Yingjing Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881638/publications.pdf

Version: 2024-02-01

145 papers	7,203 citations	43973 48 h-index	79 g-index
147	147	147	8118 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	H ₂ V ₃ O ₈ Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity. Advanced Energy Materials, 2018, 8, 1800144.	10.2	427
2	Electrochemical Kinetics of the Li[Li _{0.3} 0.3Mn _{0.47}]O ₂ Cathode Material Studied by GITT and EIS. Journal of Physical Chemistry C, 2010, 114, 22751-22757.	1.5	285
3	A General Atomic Surface Modification Strategy for Improving Anchoring and Electrocatalysis Behavior of Ti∢sub>3C∢sub>2T∢sub>2 MXene in Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 11078-11086.	7. 3	232
4	Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan. Nature Communications, 2017, 8, 15888.	5.8	188
5	Hierarchical flower-like VS2 nanosheets – A high rate-capacity and stable anode material for sodium-ion battery. Energy Storage Materials, 2018, 11, 1-7.	9.5	185
6	Carbon-coated Na ₃ V ₂ (PO ₄) ₂ F ₃ nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life. Journal of Materials Chemistry A, 2015, 3, 21478-21485.	5.2	183
7	Two-dimensional VS ₂ monolayers as potential anode materials for lithium-ion batteries and beyond: first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 21370-21377.	5.2	176
8	Revealing the Pseudoâ€Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte. Advanced Functional Materials, 2019, 29, 1902953.	7.8	176
9	NASICON-Structured NaTi ₂ (PO ₄) ₃ @C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. ACS Applied Materials & Amp; Interfaces, 2016, 8, 2238-2246.	4.0	159
10	First-Principles Calculations of $Ti < sub > 2 < / sub > N$ and $Ti < sub > 2 < / sub > NT < sub > 2 < / sub > (T = O, F, OH)$ Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond. Journal of Physical Chemistry C, 2017, 121, 13025-13034.	1.5	151
11	Core/Double-Shell Structured Na ₃ V ₂ (PO ₄) ₂ F ₃ @C Nanocomposite as the High Power and Long Lifespan Cathode for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31709-31715.	4.0	147
12	Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. Journal of Materials Chemistry A, 2014, 2, 7555.	5.2	125
13	Healable, Highly Conductive, Flexible, and Nonflammable Supramolecular Ionogel Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 19413-19420.	4.0	125
14	Induction of Planar Sodium Growth on MXene (Ti ₃ C ₂ T _{<i>x</i>})-Modified Carbon Cloth Hosts for Flexible Sodium Metal Anodes. ACS Nano, 2020, 14, 8744-8753.	7. 3	125
15	Lithiophilic Three-Dimensional Porous Ti ₃ C ₂ T <i>>_x</i> -rGO Membrane as a Stable Scaffold for Safe Alkali Metal (Li or Na) Anodes. ACS Nano, 2019, 13, 14319-14328.	7.3	123
16	Improvement in electrochemical performance of V2O5 by Cu doping. Journal of Power Sources, 2007, 165, 386-392.	4.0	106
17	Synthesis of Cu–Ir nanocages with enhanced electrocatalytic activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 19669-19673.	5.2	104
18	Rational design of bifunctional ORR/OER catalysts based on Pt/Pd-doped Nb ₂ CT ₂ MXene by first-principles calculations. Journal of Materials Chemistry A, 2020, 8, 3097-3108.	5.2	104

#	Article	IF	CITATIONS
19	Improved Electrochemical Performance and Thermal Stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 Cathode Material by Li3PO4 Surface Coating. Electrochimica Acta, 2015, 174, 875-884.	2.6	101
20	Na ₃ V ₂ (PO ₄) ₃ /C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. Journal of Materials Chemistry A, 2015, 3, 8636-8642.	5.2	100
21	Mesoporous TiN microspheres as an efficient polysulfide barrier for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 14359-14366.	5.2	96
22	VS ₄ Nanoparticles Anchored on Graphene Sheets as a Highâ€Rate and Stable Electrode Material for Sodium Ion Batteries. ChemSusChem, 2018, 11, 735-742.	3.6	93
23	<i>In Operando</i> Synchrotron Studies of NH ₄ ⁺ Preintercalated V ₂ O ₅ Á <i>nH₂O Nanobelts as the Cathode Material for Aqueous Rechargeable Zinc Batteries. ACS Nano, 2020, 14, 11809-11820.</i>	7.3	87
24	Ultrafast lithium storage in TiO ₂ –bronze nanowires/N-doped graphene nanocomposites. Journal of Materials Chemistry A, 2015, 3, 4180-4187.	5 . 2	82
25	Improvements in the Electrochemical Kinetic Properties and Rate Capability of Anatase Titanium Dioxide Nanoparticles by Nitrogen Doping. ACS Applied Materials & Interfaces, 2014, 6, 4458-4465.	4.0	81
26	Synthesis and optimizable electrochemical performance of reduced graphene oxide wrapped mesoporous TiO ₂ microspheres. Nanoscale, 2014, 6, 4108-4116.	2.8	78
27	Assembly of SnSe Nanoparticles Confined in Graphene for Enhanced Sodium″on Storage Performance. Chemistry - A European Journal, 2016, 22, 1445-1451.	1.7	77
28	Performance improvement of MXene-based perovskite solar cells upon property transition from metallic to semiconductive by oxidation of Ti ₃ C ₂ T _x in air. Journal of Materials Chemistry A, 2021, 9, 5016-5025.	5.2	77
29	Recent advances in IV–VI semiconductor nanocrystals: synthesis, mechanism, and applications. RSC Advances, 2013, 3, 8104.	1.7	76
30	High-Performance Li(Li _{0.18} Ni _{0.15} Co _{0.15} Mn _{0.52})O ₂ @Li _{4 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer. Chemistry of Materials, 2015, 27, 5745-5754.}	ˈsyb>M <sı< td=""><td>ub>5</td></sı<>	ub>5
31	Improved Lithiumâ€lon and Sodiumâ€lon Storage Properties from Fewâ€Layered WS ₂ Nanosheets Embedded in a Mesoporous CMKâ€3 Matrix. Chemistry - A European Journal, 2017, 23, 7074-7080.	1.7	7 5
32	Co ₉ S ₈ @carbon porous nanocages derived from a metal–organic framework: a highly efficient bifunctional catalyst for aprotic Li–O ₂ batteries. Journal of Materials Chemistry A, 2018, 6, 8595-8603.	5.2	71
33	Competition between insertion of Li + and Mg 2+: An example of TiO 2-B nanowires for Mg rechargeable batteries and Li + /Mg 2+ hybrid-ion batteries. Journal of Power Sources, 2017, 346, 134-142.	4.0	70
34	Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. Journal of Materials Chemistry A, 2020, 8, 17065-17077.	5.2	70
35	Hybrid graphene@MoS ₂ @TiO ₂ microspheres for use as a high performance negative electrode material for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 3667-3674.	5.2	66
36	Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries. Applied Surface Science, 2021, 538, 148043.	3.1	63

#	Article	IF	Citations
37	Computational Screening of 2D Ordered Double Transition-Metal Carbides (MXenes) as Electrocatalysts for Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 10584-10592.	1.5	62
38	Superior Mg2+ storage properties of VS2 nanosheets by using an APC-PP14CI/THF electrolyte. Energy Storage Materials, 2019, 23, 749-756.	9.5	60
39	Flexible MnS–Carbon Fiber Hybrids for Lithiumâ€ion and Sodiumâ€ion Energy Storage. Chemistry - A European Journal, 2018, 24, 13535-13539.	1.7	58
40	A high-performance supercapacitor based on activated carbon fibers with an optimized pore structure and oxygen-containing functional groups. Materials Chemistry Frontiers, 2017, 1, 958-966.	3.2	57
41	Investigation of chloride ion adsorption onto Ti ₂ C MXene monolayers by first-principles calculations. Journal of Materials Chemistry A, 2017, 5, 24720-24727.	5.2	57
42	A long cycle-life and high safety Na ⁺ /Mg ²⁺ hybrid-ion battery built by using a TiS ₂ derived titanium sulfide cathode. Journal of Materials Chemistry A, 2017, 5, 600-608.	5.2	57
43	An Amorphous/Crystalline Incorporated Si/SiO <i></i> >kolor Anode Material Derived from Biomass Corn Leaves for Lithiumâ€ion Batteries. Small, 2020, 16, e2001714.	5.2	56
44	Vacancy engineering in VS2 nanosheets for ultrafast pseudocapacitive sodium ion storage. Chemical Engineering Journal, 2021, 421, 129715.	6.6	56
45	A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 22012-22016.	5.2	54
46	Redox mediators for high-performance lithium–oxygen batteries. National Science Review, 2022, 9, nwac040.	4.6	54
47	Synthesis of H ₂ V ₃ O ₈ /Reduced Graphene Oxide Composite as a Promising Cathode Material for Lithiumâ€lon Batteries. ChemPlusChem, 2014, 79, 447-453.	1.3	52
48	Cu ₃ V ₂ O ₈ Nanoparticles as Intercalationâ€Type Anode Material for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 11405-11412.	1.7	51
49	Enhanced electrochemical properties of TiO2(B) nanoribbons using the styrene butadiene rubber and sodium carboxyl methyl cellulose water binder. Journal of Power Sources, 2014, 246, 95-102.	4.0	50
50	Phase transformation, ionic diffusion, and charge transfer mechanisms of KVOPO ₄ in potassium ion batteries: first-principles calculations. Journal of Materials Chemistry A, 2018, 6, 16228-16234.	5.2	50
51	Insight into the Anchoring and Catalytic Effects of VO ₂ and VS ₂ Nanosheets as Sulfur Cathode Hosts for Li–S Batteries. ChemSusChem, 2019, 12, 4671-4678.	3.6	50
52	Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochimica Acta, 2012, 79, 95-101.	2.6	48
53	Copper-Doped Titanium Dioxide Bronze Nanowires with Superior High Rate Capability for Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7957-7965.	4.0	47
54	NASICON-Type Mg _{0.5} Ti ₂ (PO ₄) ₃ Negative Electrode Material Exhibits Different Electrochemical Energy Storage Mechanisms in Na-Ion and Li-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4709-4718.	4.0	47

#	Article	IF	CITATIONS
55	Multi-Functional Surface Engineering for Li-Excess Layered Cathode Material Targeting Excellent Electrochemical and Thermal Safety Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3308-3318.	4.0	46
56	Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries. Chemical Engineering Journal, 2021, 409, 128145.	6.6	45
57	Selfâ€Assembled CoS Nanoflowers Wrapped in Reduced Graphene Oxides as the Highâ€Performance Anode Materials for Sodiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 13150-13157.	1.7	43
58	Ultrathin TiO ₂ -B nanowires as an anode material for Mg-ion batteries based on a surface Mg storage mechanism. Nanoscale, 2017, 9, 12934-12940.	2.8	42
59	Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 586-592.	5.2	40
60	Li ⁺ /Mg ²⁺ Hybridâ€lon Batteries with Long Cycle Life and High Rate Capability Employing MoS ₂ Nano Flowers as the Cathode Material. Chemistry - A European Journal, 2016, 22, 18073-18079.	1.7	40
61	Fast Li ⁺ diffusion in interlayer-expanded vanadium disulfide nanosheets for Li ⁺ /Mg ²⁺ hybrid-ion batteries. Journal of Materials Chemistry A, 2018, 6, 5782-5788.	5.2	40
62	Understanding the mechanism of byproduct formation with <i>in operando</i> synchrotron techniques and its effects on the electrochemical performance of VO ₂ (B) nanoflakes in aqueous rechargeable zinc batteries. Journal of Materials Chemistry A, 2020, 8, 9567-9578.	5.2	40
63	Temperature-Dependent Nucleation and Electrochemical Performance of Zn Metal Anodes. Nano Letters, 2022, 22, 1549-1556.	4.5	39
64	Highâ€Voltage Aqueous Mgâ€Ion Batteries Enabled by Solvation Structure Reorganization. Advanced Functional Materials, 2022, 32, 2110674.	7.8	38
65	Synthesis of graphene-wrapped ZnMn ₂ O ₄ hollow microspheres as high performance anode materials for lithium ion batteries. RSC Advances, 2015, 5, 99107-99114.	1.7	37
66	Zinc chlorophyll aggregates as hole transporters for biocompatible, natural-photosynthesis-inspired solar cells. Journal of Power Sources, 2015, 297, 519-524.	4.0	34
67	Structural prediction and multilayer Li ⁺ storage in two-dimensional VC ₂ carbide studied by first-principles calculations. Journal of Materials Chemistry A, 2019, 7, 8873-8881.	5.2	34
68	Atomic insight into the structural transformation and anionic/cationic redox reactions of VS ₂ nanosheets in sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15985-15992.	5.2	33
69	Mechanisms of the Planar Growth of Lithium Metal Enabled by the 2D Lattice Confinement from a Ti ₃ C ₂ Ti> _x MXene Intermediate Layer. Advanced Functional Materials, 2021, 31, 2010987.	7.8	33
70	Trilayer Chlorophyll-Based Cascade Biosolar Cells. ACS Energy Letters, 2019, 4, 384-389.	8.8	32
71	Relationships between Structural Changes and Electrochemical Kinetics of Li-Excess Li1.13Ni0.3Mn0.57O2 during the First Charge. Journal of Physical Chemistry C, 2013, 117, 3279-3286.	1.5	30
72	Exploration of Ca _{0.5} Ti ₂ (PO ₄) ₃ @carbon Nanocomposite as the High-Rate Negative Electrode for Na-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 35336-35341.	4.0	30

#	Article	IF	Citations
73	Co ₉ S ₈ /Co as a Highâ€Performance Anode for Sodiumâ€Ion Batteries with an Etherâ€Based Electrolyte. ChemSusChem, 2017, 10, 4778-4785.	3.6	29
74	Lithium poly-acrylic acid as a fast Li+ transport media and a highly stable aqueous binder for Li3V2(PO4)3 cathode electrodes. Journal of Materials Chemistry A, 2018, 6, 23357-23365.	5.2	29
75	Dual Roles of Li ₃ N as an Electrode Additive for Liâ€Excess Layered Cathode Materials: A Liâ€Ion Sacrificial Salt and Electrodeâ€Stabilizing Agent. Chemistry - A European Journal, 2018, 24, 13815-13820.	1.7	29
76	Designing of Efficient Bifunctional ORR/OER Pt Single-Atom Catalysts Based on O-Terminated MXenes by First-Principles Calculations. ACS Applied Materials & Interfaces, 2021, 13, 52508-52518.	4.0	29
77	P2â€NaCo _{0.5} Mn _{0.5} O ₂ as a Positive Electrode Material for Sodiumâ€lon Batteries. ChemPhysChem, 2015, 16, 3408-3412.	1.0	28
78	Electrochemical Properties and Sodiumâ€Storage Mechanism of Ag ₂ Mo ₂ O ₇ as the Anode Material for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, 7248-7254.	1.7	28
79	An organic–inorganic semi-interpenetrating network ionogel electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 4775-4783.	5.2	27
80	Cu Nanowires with Clean Surfaces: Synthesis and Enhanced Electrocatalytic Activity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26886-26894.	4.0	26
81	Experimental Investigation and First-Principles Calculations of a Ni ₃ Se ₄ Cathode Material for Mg-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9316-9321.	4.0	26
82	Green synthesis of 3D SnO ₂ /graphene aerogels and their application in lithium-ion batteries. RSC Advances, 2015, 5, 39746-39751.	1.7	25
83	In situ growth of MnO ₂ nanosheets on activated carbon fibers: a low-cost electrode for high performance supercapacitors. RSC Advances, 2016, 6, 14819-14825.	1.7	25
84	A novel lithium difluoro(oxalate) borate and lithium hexafluoride phosphate dual-salt electrolyte for Li-excess layered cathode material. Journal of Alloys and Compounds, 2018, 736, 136-142.	2.8	25
85	Selfâ€Assembly of Antisite Defectless nanoâ€LiFePO ₄ @C/Reduced Graphene Oxide Microspheres for Highâ€Performance Lithiumâ€lon Batteries. ChemSusChem, 2018, 11, 2255-2261.	3.6	25
86	Bipolar CoSe2 nanocrystals embedded in porous carbon nanocages as an efficient electrocatalyst for Li-S batteries. Chemical Engineering Journal, 2022, 440, 135820.	6.6	25
87	Design and synthesis of high performance LiFePO ₄ /C nanomaterials for lithium ion batteries assisted by a facile H ⁺ /Li ⁺ ion exchange reaction. Journal of Materials Chemistry A, 2015, 3, 8062-8069.	5.2	24
88	A feasible approach to synthesize $Cu < sub > 2 < sub > 0$ microcrystals and their enhanced non-enzymatic sensor performance. RSC Advances, 2015, 5, 59099-59105.	1.7	24
89	A Rigid-Flexible Protecting Film with Surface Pits Structure for Dendrite-Free and High-Performance Lithium Metal Anode. Nano Letters, 2021, 21, 7063-7069.	4.5	24
90	Understanding rechargeable magnesium ion batteries via first-principles computations: A comprehensive review. Energy Storage Materials, 2022, 48, 344-355.	9.5	24

#	Article	IF	Citations
91	Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries. Chemical Research in Chinese Universities, 2015, 31, 270-275.	1.3	23
92	Phase transformation, charge transfer, and ionic diffusion of Na ₄ MnV(PO ₄) ₃ in sodium-ion batteries: a combined first-principles and experimental study. Journal of Materials Chemistry A, 2020, 8, 17477-17486.	5. 2	23
93	Kinetically controlled synthesis of nanoporous Au and its enhanced electrocatalytic activity for glucose-based biofuel cells. Nanoscale, 2017, 9, 2514-2520.	2.8	22
94	Nucleation and Conversion Transformations of the Transition Metal Polysulfide VS ₄ in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22307-22313.	4.0	21
95	Magnesium Ion Storage Properties in a Layered (NH ₄) ₂ O Nanobelt Cathode Material Activated by Lattice Water. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30625-30632.	4.0	20
96	Revealing the distinct electrochemical properties of TiSe2 monolayer and bulk counterpart in Li-ion batteries by first-principles calculations. Applied Surface Science, 2021, 540, 148314.	3.1	19
97	Theoretical prediction and atomic-scale investigation of a tetra-VN ₂ monolayer as a high energy alkali ion storage material for rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 26858-26866.	5.2	18
98	N-Doped and Cu-doped TiO $<$ sub $>$ 2 $<$ /sub $>$ -B nanowires with enhanced photoelectrochemical activity. RSC Advances, 2016, 6, 16177-16182.	1.7	17
99	ldentification of a better charge redox mediator for lithium–oxygen batteries. Energy Storage Materials, 2020, 25, 795-800.	9.5	17
100	Studies of the electrochemical properties and thermal stability of LiNi1/3Co1/3Mn1/3O2/LiFePO4 composite cathodes for lithium ion batteries. Ionics, 2014, 20, 1087-1093.	1.2	16
101	Design of porous Ag platelet structures with tunable porosity and high catalytic activity. Journal of Materials Chemistry A, 2015, 3, 22339-22346.	5.2	16
102	Q-Carbon: A New Carbon Allotrope with a Low Degree of s–p Orbital Hybridization and Its Nucleation Lithiation Process in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 619-626.	4.0	16
103	Ordered Dual-Channel carbon embedded with molybdenum nitride catalytically induced High-Performance Lithium-Sulfur battery. Chemical Engineering Journal, 2022, 431, 134163.	6.6	16
104	Lithiumâ€Rich Layered Oxide Li _{1.18} Ni _{0.15} Co _{0.15} Mn _{0.52} O ₂ as the Cathode Material for Hybrid Sodiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, 11610-11616.	1.7	14
105	Alternative motif toward high-quality wurtzite MnSe nanorods via subtle sulfur element doping. Nanoscale, 2016, 8, 8784-8790.	2.8	13
106	Unravelling a solution-based formation of single-crystalline kinked wurtzite nanowires: The case of MnSe. Nano Research, 2017, 10, 2311-2320.	5.8	13
107	Revisiting the layered LiNi0.4Mn0.4Co0.2O2: a magnetic approach. RSC Advances, 2012, 2, 9986.	1.7	12
108	Tunable Electrochemistry via Controlling Lattice Water in Layered Oxides of Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34909-34914.	4.0	12

#	Article	IF	Citations
109	Electronic Properties, Phase Transformation, and Anionic Redox of Monoclinic Na ₂ MnO ₃ Cathode Material for Sodiumâ€lon Batteries: Firstâ€Principle Calculations. ChemElectroChem, 2019, 6, 3987-3993.	1.7	12
110	Hierarchical Aluminum Vanadate Microspheres with Structural Water: Highâ€Performance Cathode Materials for Aqueous Rechargeable Zinc Batteries. ChemPlusChem, 2020, 85, 2129-2135.	1.3	12
111	High capacity and rate capability of a layered Li2RuO3cathode utilized in hybrid Na+/Li+batteries. Journal of Materials Chemistry A, 2015, 3, 18273-18278.	5.2	11
112	Enhancement of performance in chlorophyll-based bulk-heterojunction organic-inorganic solar cells upon aggregate management via solvent engineering. Organic Electronics, 2018, 59, 419-426.	1.4	11
113	Structure, charge transfer, and kinetic properties of NaVPO4F with Na+ extraction: a comprehensive first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 14612-14619.	1.3	11
114	High energy density lithium ion batteries using Li2.6Co0.4â°'xCuxN (anode) and Cu0.04V2O5 (cathode) electrode materials. Materials Letters, 2008, 62, 4210-4212.	1.3	10
115	Cluster-spin-glass behavior in layered LiNi0.4Mn0.4Co0.2O2. Journal of Applied Physics, 2009, 106, 053904.	1.1	10
116	Electrochemical characterizations of Li2.6Co0.4N/Graphite anodes for lithium ion batteries. Materials Letters, 2009, 63, 504-506.	1.3	9
117	High-throughput screening of TMOCl cathode materials based on the full-cell system for chloride-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23169-23177.	5.2	9
118	Electrochemical Performance and Storage Mechanism of Ag ₂ Mo ₂ O ₇ Microâ€rods as the Anode Material for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2017, 23, 5148-5153.	1.7	8
119	Potassium ion storage properties of Alpha-graphdiyne investigated by first-principles calculations. Electrochimica Acta, 2019, 326, 134955.	2.6	8
120	Mesoporous Niobium Nitride Nanowires Encapsulated in Carbon for High-Performance Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2021, 4, 2606-2613.	2.4	8
121	Solution-processable two-dimensional conjugated organic small molecules containing triphenylamine cores for photovoltaic application. New Journal of Chemistry, 2014, 38, 5009-5017.	1.4	7
122	An environmentally friendly route to synthesize Cu micro/nanomaterials with "sustainable oxidation resistance―and promising catalytic performance. RSC Advances, 2016, 6, 35036-35043.	1.7	7
123	Inverse design and high-throughput screening of TM-A (TM: Transition metal; A: O, S, Se) cathodes for chloride-ion batteries. Energy Storage Materials, 2022, 51, 80-87.	9.5	7
124	Improved electrochemical properties of tavorite LiFeSO ₄ F by surface coating with hydrophilic poly-dopamine via a self-polymerization process. RSC Advances, 2016, 6, 6523-6527.	1.7	6
125	Charge transfer dynamics in chlorophyll-based biosolar cells. Physical Chemistry Chemical Physics, 2019, 21, 22563-22568.	1.3	6
126	P-type P3HT interfacial layer induced performance improvement in chlorophyll-based solid-state solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 349-354.	2.0	6

#	Article	IF	CITATIONS
127	Unusual Magnetism Due to a Random Distribution of Cations in \hat{l}_{\pm} -LiFeO (sub) 2 (sub). Journal of the Physical Society of Japan, 2011, 80, 094705.	0.7	5
128	Prediction of the phase transition from ferromagnetic perovskite to non-magnetic post-perovskite in SrRuO3: A first-principles study. Solid State Communications, 2011, 151, 798-801.	0.9	5
129	Synthesis, characterization, and photovoltaic properties of acceptor–donor–acceptor organic small molecules with different terminal electron-withdrawing groups. Journal of Materials Science, 2014, 49, 5279-5288.	1.7	5
130	Preparation and Electrochemical Properties of Tinâ€"Ironâ€"Carbon Nanocomposite as the Anode of Lithiumâ€Ion Batteries. Chemistry - an Asian Journal, 2015, 10, 2460-2466.	1.7	5
131	First-principles calculations of bulk WX $<$ sub $>$ 2 $<$ /sub $>$ (X = Se, Te) as anode materials for Na ion battery. Journal of Physics Condensed Matter, 2022, 34, 324001.	0.7	5
132	Preparation and electrochemical properties of nano Al0.2V2O5.3 $\hat{a}^{\hat{i}}$ cathode materials for rechargeable lithium batteries. Ionics, 2010, 16, 209-213.	1.2	4
133	Excellent thermal stability of tavorite Li _x FeSO ₄ F used as a cathode material for lithium ion batteries. RSC Advances, 2014, 4, 64200-64203.	1.7	4
134	Synthesis, characterization, and photovoltaic properties of a solution-processable two-dimensional-conjugated organic small molecule containing a triphenylamine core. Journal of Materials Science, 2015, 50, 57-65.	1.7	4
135	Potential multiferroic materials of Fe-substituted BiCoO3: An ab initio study. Computational Materials Science, 2016, 119, 33-40.	1.4	4
136	Solution synthesis of conveyor-like MnSe nanostructured architectures with an unusual core/shell magnetic structure. CrystEngComm, 2017, 19, 3331-3337.	1.3	4
137	<i>In situ</i> Ga-alloying in germanium nano-twists by the inhibition of fractal growth with fast Li ⁺ -mobility. Chemical Communications, 2019, 55, 10412-10415.	2.2	4
138	Flexible structural changes of the oxocarbon salt K2C6O6 during potassium ion insertion: An in-depth first-principles study. Electrochimica Acta, 2021, 383, 138357.	2.6	4
139	Alternating current susceptibility study on the cluster glass behavior in disordered $\langle i \rangle \hat{l}^2 - \langle i \rangle LiFeO2$. Journal of Applied Physics, 2011, 110, .	1.1	3
140	Synthesis and electrochemical properties of highly crystallized CuV2O6 nanowires. Chemical Research in Chinese Universities, 2015, 31, 708-711.	1.3	3
141	Hierarchical Porous Carbon Nanotube Spheres for High-performance K-O2 Batteries. Chemical Research in Chinese Universities, 2021, 37, 254-258.	1.3	2
142	Effect of nonmagnetic impurity doped on the structural and magnetic properties of quasi-one-dimensional antiferromagnet LiCuVO4. Chemical Research in Chinese Universities, 2015, 31, 457-460.	1.3	1
143	Titaniumâ€Substituted Tavorite LiFeSO 4 F as Cathode Material for Lithium Ion Batteries: Firstâ€Principles Calculations and Experimental Study. ChemPlusChem, 2020, 85, 900-905.	1.3	1
144	Effect of electron doping on the magnetic properties of spin-Peierls like material α′-NaV2O5. Journal of Alloys and Compounds, 2009, 479, 603-606.	2.8	0

#	Article	IF	CITATIONS
145	Frontispiece: Lithiumâ€Rich Layered Oxide Li _{1.18} Ni _{0.15} Co _{0.15} Mn _{0.52} O ₂ as the Cathode Material for Hybrid Sodiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, .	1.7	O