Benjamin M Nitsche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/688127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Subpopulations of hyphae secrete proteins or resist heat stress in <i>Aspergillus oryzae</i> colonies. Environmental Microbiology, 2020, 22, 447-455.	1.8	13
2	The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans. Scientific Reports, 2017, 7, 45073.	1.6	20
3	A Transcriptome Meta-Analysis Proposes Novel Biological Roles for the Antifungal Protein AnAFP in Aspergillus niger. PLoS ONE, 2016, 11, e0165755.	1.1	39
4	Transcriptomic and molecular genetic analysis of the cell wall salvage response of <i>Aspergillus niger</i> to the absence of galactofuranose synthesis. Cellular Microbiology, 2016, 18, 1268-1284.	1.1	27
5	An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader. Applied Microbiology and Biotechnology, 2016, 100, 6309-6317.	1.7	1
6	Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants â^†brlA and â^†flbA. PLoS ONE, 2015, 10, e0116269.	1.1	22
7	The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation. Advances in Biochemical Engineering/Biotechnology, 2015, 149, 91-132.	0.6	41
8	9 Transcriptomics of Industrial Filamentous Fungi: A New View on Regulation, Physiology, and Application. , 2014, , 209-232.		2
9	The capacity of Aspergillus niger to sense and respond to cell wall stress requires at least three transcription factors: RlmA, MsnA and CrzA. Fungal Biology and Biotechnology, 2014, 1, 5.	2.5	15
10	Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. Microbiology (United Kingdom), 2013, 159, 1853-1867.	0.7	17
11	Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Applied Microbiology and Biotechnology, 2013, 97, 8205-8218.	1.7	42
12	Deletion of <i>flbA</i> Results in Increased Secretome Complexity and Reduced Secretion Heterogeneity in Colonies of <i>Aspergillus niger</i> . Journal of Proteome Research, 2013, 12, 1808-1819.	1.8	49
13	The Transcriptional Repressor TupA in Aspergillus niger Is Involved in Controlling Gene Expression Related to Cell Wall Biosynthesis, Development, and Nitrogen Source Availability. PLoS ONE, 2013, 8, e78102.	1.1	19
14	Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics, 2012, 13, 350.	1.2	46
15	The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome. BMC Genomics, 2012, 13, 380.	1.2	108
16	The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genomics, 2012, 13, 701.	1.2	46
17	The Use of Open Source Bioinformatics Tools to Dissect Transcriptomic Data. Methods in Molecular Biology, 2012, 835, 311-331.	0.4	9
18	New resources for functional analysis of omics data for the genus Aspergillus. BMC Genomics, 2011, 12, 486.	1.2	28

2

#	Article	IF	CITATIONS
19	Transcriptomic Insights into the Physiology of Aspergillus niger Approaching a Specific Growth Rate of Zero. Applied and Environmental Microbiology, 2010, 76, 5344-5355.	1.4	52
20	Reconstruction of Signaling Networks Regulating Fungal Morphogenesis by Transcriptomics. Eukaryotic Cell, 2009, 8, 1677-1691.	3.4	42