Jack A Alexander-Webber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6881057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low-Temperature Processed Electron Collection Layers of Graphene/TiO ₂ Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014, 14, 724-730.	4.5	999
2	Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.	5.8	784
3	Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature, 2013, 495, 215-219.	13.7	751
4	Single-nanowire spectrometers. Science, 2019, 365, 1017-1020.	6.0	291
5	Structured Organic–Inorganic Perovskite toward a Distributed Feedback Laser. Advanced Materials, 2016, 28, 923-929.	11.1	257
6	Enhancing Photoluminescence and Mobilities in WS ₂ Monolayers with Oleic Acid Ligands. Nano Letters, 2019, 19, 6299-6307.	4.5	80
7	Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 8780-8789.	7.3	52
8	Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Interfaces, 2017, 9, 43993-44000.	4.0	49
9	Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene. ACS Applied Materials & Interfaces, 2016, 8, 30564-30575.	4.0	47
10	Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. Nature Communications, 2015, 6, 7536.	5.8	46
11	Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Nanoscale, 2015, 7, 13135-13142.	2.8	43
12	Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays. ACS Photonics, 2016, 3, 1747-1753.	3.2	42
13	Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Applied Materials & Interfaces, 2016, 8, 33072-33082.	4.0	40
14	Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide. 2D Materials, 2017, 4, 011008.	2.0	39
15	Nanoengineering Coaxial Carbon Nanotube–Dual-Polymer Heterostructures. ACS Nano, 2012, 6, 6058-6066.	7.3	36
16	Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13591-13603.	7.3	27
17	Production of Highâ€Purity Singleâ€Chirality Carbon Nanotube Hybrids by Selective Polymer Exchange. Small, 2013, 9, 2245-2249	5.2	24
18	Surface-Effect-Induced Optical Bandgap Shrinkage in GaN Nanotubes. Nano Letters, 2015, 15, 4472-4476.	4.5	21

#	Article	IF	CITATIONS
19	Observation of Annealing-Induced Doping in TiO ₂ Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 1821-1827.	1.5	19
20	Hot carrier relaxation of Dirac fermions in bilayer epitaxial graphene. Journal of Physics Condensed Matter, 2015, 27, 164202.	0.7	19
21	Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology, 2017, 28, 485201.	1.3	18
22	Electronic properties of CVD graphene: The role of grain boundaries, atmospheric doping, and encapsulation by ALD. Physica Status Solidi (B): Basic Research, 2016, 253, 2321-2325.	0.7	17
23	Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields. Nano Letters, 2014, 14, 5194-5200.	4.5	15
24	Giant photoluminescence enhancement in MoSe ₂ monolayers treated with oleic acid ligands. Nanoscale Advances, 2021, 3, 4216-4225.	2.2	14
25	Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Materials, 2020, 7, 024005.	2.0	13
26	Understanding metal organic chemical vapour deposition of monolayer WS ₂ : the enhancing role of Au substrate for simple organosulfur precursors. Nanoscale, 2020, 12, 22234-22244.	2.8	13
27	Terahertz Metamaterial Optoelectronic Modulators With GHz Reconfiguration Speed. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 520-526.	2.0	13
28	A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing. Scientific Reports, 2021, 11, 22915.	1.6	11
29	Engineering Nanostructures by Binding Single Molecules to Single-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 12748-12754.	7.3	10
30	Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Scientific Reports, 2016, 6, 37167.	1.6	6
31	Dirac-Point Shift by Carrier Injection Barrier in Graphene Field-Effect Transistor Operation at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 10618-10621.	4.0	5
32	High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures. ACS Nano, 2020, 14, 15293-15305.	7.3	5
33	Reduced Stark shift in three-dimensionally confined GaN/AlGaN asymmetric multi-quantum disks. Optical Materials Express, 2015, 5, 849.	1.6	3
34	Towards a Graphene-Based Low Intensity Photon Counting Photodetector. Sensors, 2016, 16, 1351.	2.1	3
35	Multi-band magnetotransport in exfoliated thin films of Cu _{<i>x</i> } Bi ₂ Se ₃ . Journal of Physics Condensed Matter, 2018, 30, 155302.	0.7	3
36	Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devices. Applied Physics Letters, 2020, 116, .	1.5	3

#	Article	IF	CITATIONS
37	Photoluminescence of Single GaN/InGaN Nanorod Light Emitting Diode Fabricated on a Wafer Scale. Japanese Journal of Applied Physics, 2013, 52, 08JE20.	0.8	2
38	Independence of optical absorption on Auger ionization in single-walled carbon nanotubes revealed by ultrafast e–h photodoping. New Journal of Physics, 2016, 18, 023051.	1.2	0
39	Working towards graphene-based detectors for high sensitivity photodetection. , 2016, , .		0
40	Engineering semiconductor nanowires for photodetection: from visible to terahertz. , 2018, , .		0
41	Mapping Bulk and Interfacial Charge Carrier Recombination Dynamics in Perovskite Optoelectronic Devices. , 0, , .		0
42	Giant Magnetoresistance in a Chemical Vapor Deposition Graphene Constriction. ACS Nano, 2022, , .	7.3	0