Wenjian Weng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6880585/publications.pdf Version: 2024-02-01

WENHAN WENC

#	Article	IF	CITATIONS
1	Laser annealing of graphene/P(VDF-TrFE) composite films and its effects on protein adsorption. Materials Letters, 2022, 308, 131119.	1.3	2
2	Anisotropic magneto-mechanical stimulation on collagen coatings to accelerate osteogenesis. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112227.	2.5	8
3	Effects of electrical stimulation on cytokineâ€induced macrophage polarization. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 448-459.	1.3	12
4	Accelerated Osteogenesis of Heterogeneous Electric Potential Gradient on CFO/P(VDFâ€TrFE) Membranes. Advanced Materials Interfaces, 2022, 9, .	1.9	8
5	Electroactive extracellular Matrix/Polypyrrole composite films and their microenvironmental effects on osteogenic differentiation of BMSCs. Chemical Engineering Journal, 2022, 443, 136508.	6.6	15
6	Photo-thermic mineralized collagen coatings and their modulation of macrophages polarization. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112528.	2.5	4
7	PLLA/Graphene Nanocomposites Membranes with Improved Biocompatibility and Mechanical Properties. Coatings, 2022, 12, 718.	1.2	2
8	The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes. Biomaterials Science, 2022, 10, 4576-4587.	2.6	4
9	Polarization behavior of bone marrow-derived macrophages on charged P(VDF-TrFE) coatings. Biomaterials Science, 2021, 9, 874-881.	2.6	19
10	Enhanced osteogenic differentiation of mesenchymal stem cells on P(<scp>VDFâ€TrFE</scp>) layer coated microelectrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2227-2236.	1.6	11
11	Light-induced osteogenic differentiation of BMSCs with graphene/TiO2 composite coating on Ti implant. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111996.	2.5	15
12	KLF2+ stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells, 2020, 38, 395-409.	1.4	15
13	Bioactive nanocomposite coatings under visible light illumination promoted surface-mediated gene delivery. Biomaterials Science, 2020, 8, 3685-3696.	2.6	7
14	Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS Applied Materials & Interfaces, 2020, 12, 31793-31803.	4.0	5
15	Enhancing osteogenic differentiation of BMSCs on high magnetoelectric response films. Materials Science and Engineering C, 2020, 113, 110970.	3.8	24
16	Novel Platform for Surface-Mediated Gene Delivery Assisted with Visible-Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 17290-17301.	4.0	5
17	Gr/TiO ₂ Films with Light-Controlled Positive/Negative Charge for Cell Harvesting Application. ACS Biomaterials Science and Engineering, 2020, 6, 2020-2028.	2.6	9
18	Electrical Potential Specified Release of BSA/Hep/Polypyrrole Composite Film and Its Cellular Responses. ACS Applied Materials & Interfaces, 2019, 11, 25457-25464.	4.0	13

#	Article	IF	CITATIONS
19	Graphene/Si-Promoted Osteogenic Differentiation of BMSCs through Light Illumination. ACS Applied Materials & Interfaces, 2019, 11, 43857-43864.	4.0	18
20	Controlled Release of Naringin in GelMA-Incorporated Rutile Nanorod Films to Regulate Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Omega, 2019, 4, 19350-19357.	1.6	23
21	Chiral geometry regulates stem cell fate and activity. Biomaterials, 2019, 222, 119456.	5.7	26
22	Enhanced osteogenesis of quasi-three-dimensional hierarchical topography. Journal of Nanobiotechnology, 2019, 17, 102.	4.2	12
23	Surface hydroxyls regulation promotes light-induced cell detachment on TiO2 nanodot films. Surface and Coatings Technology, 2019, 358, 461-466.	2.2	6
24	Insights into the Osteogenic Differentiation of Mesenchymal Stem Cells on Crystalline and Vitreous Silica. ACS Biomaterials Science and Engineering, 2019, 5, 3352-3360.	2.6	4
25	Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 3311-3324.	2.6	15
26	Comprehensive Evaluation of Surface Potential Characteristics on Mesenchymal Stem Cells' Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 22218-22227.	4.0	24
27	In Situ Controlled Surface Microstructure of 3D Printed Ti Alloy to Promote Its Osteointegration. Materials, 2019, 12, 815.	1.3	14
28	Periodic-Mechanical-Stimulus Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells on Fe ₃ O ₄ /Mineralized Collagen Coatings. ACS Biomaterials Science and Engineering, 2019, 5, 6446-6453.	2.6	14
29	Redox State of PDA Directs Cellular Responses through Preadsorbed Protein. ACS Biomaterials Science and Engineering, 2019, 5, 553-560.	2.6	6
30	Surface hydroxylation regulates cellular osteogeneses on TiO2 and Ta2O5 nanorod films. Colloids and Surfaces B: Biointerfaces, 2018, 167, 213-219.	2.5	12
31	Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2018, 10, 7841-7851.	4.0	62
32	Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomaterialia, 2018, 74, 291-301.	4.1	31
33	Magnetically Assisted Electrodeposition of Aligned Collagen Coatings. ACS Biomaterials Science and Engineering, 2018, 4, 1528-1535.	2.6	16
34	TiO2/ZnO composite nanodots films and their cellular responses. Journal of Sol-Gel Science and Technology, 2018, 86, 459-467.	1,1	3
35	Cell-Sheet-Derived ECM Coatings and Their Effects on BMSCs Responses. ACS Applied Materials & Interfaces, 2018, 10, 11508-11518.	4.0	37
36	Magnetically actuated mechanical stimuli on Fe3O4/mineralized collagen coatings to enhance osteogenic differentiation of the MC3T3-E1 cells. Acta Biomaterialia, 2018, 71, 49-60.	4.1	56

#	Article	IF	CITATIONS
37	Enhancing bone regeneration by combining mesenchymal stem cell sheets with βâ€TCP/COLâ€I scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2037-2045.	1.6	20
38	A facile synthesis of polydopamine/TiO2 composite films for cell sheet harvest application. Colloids and Surfaces B: Biointerfaces, 2018, 172, 355-361.	2.5	11
39	Charge injection based electrical stimulation on polypyrrole planar electrodes to regulate cellular osteogenic differentiation. RSC Advances, 2018, 8, 18470-18479.	1.7	12
40	Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO2 nanorod films. Journal of Materials Science: Materials in Medicine, 2018, 29, 136.	1.7	3
41	Enhanced Osteointegration of Hierarchical Structured 3D-Printed Titanium Implants. ACS Applied Bio Materials, 2018, 1, 90-99.	2.3	13
42	Improved rhBMP-2 function on MBG incorporated TiO 2 nanorod films. Colloids and Surfaces B: Biointerfaces, 2017, 150, 153-158.	2.5	14
43	SiO ₂ /TiO ₂ Nanocomposite Films on Polystyrene for Light-Induced Cell Detachment Application. ACS Applied Materials & Interfaces, 2017, 9, 2130-2137.	4.0	20
44	Surface Atomic Structure Directs the Fate of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 15274-15285.	4.0	20
45	Surface hydroxyl groups regulate the osteogenic differentiation of mesenchymal stem cells on titanium and tantalum metals. Journal of Materials Chemistry B, 2017, 5, 3955-3963.	2.9	38
46	Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids and Surfaces B: Biointerfaces, 2017, 156, 213-220.	2.5	21
47	Controlled Release of Naringin in Metal-Organic Framework-Loaded Mineralized Collagen Coating to Simultaneously Enhance Osseointegration and Antibacterial Activity. ACS Applied Materials & Interfaces, 2017, 9, 19698-19705.	4.0	97
48	Cytocompatibility of Titanium Microsphere-Based Surfaces. ACS Biomaterials Science and Engineering, 2017, 3, 3254-3260.	2.6	3
49	Visible-Light-Responsive Surfaces for Efficient, Noninvasive Cell Sheet Harvesting. ACS Applied Materials & Interfaces, 2017, 9, 28250-28259.	4.0	26
50	Engineering prevascularized composite cell sheet by light-induced cell sheet technology. RSC Advances, 2017, 7, 32468-32477.	1.7	9
51	Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Scientific Reports, 2017, 7, 17926.	1.6	35
52	Cell responses on a H2Ti3O7 nanowire film. RSC Advances, 2017, 7, 33606-33613.	1.7	3
53	Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology. ACS Applied Materials & Interfaces, 2017, 9, 36513-36524.	4.0	43
54	Facet-Specific Mineralization Behavior of Nano-CaP on Anatase Polyhedral Microcrystals. ACS Biomaterials Science and Engineering, 2017, 3, 875-881.	2.6	4

#	Article	IF	CITATIONS
55	Enhanced Osteogenic Activity of TiO ₂ Nanorod Films with Microscaled Distribution of Zn-CaP. ACS Applied Materials & Interfaces, 2016, 8, 6944-6952.	4.0	26
56	Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films. Materials Science and Engineering C, 2016, 63, 240-246.	3.8	15
57	Electrochemical deposition of mineralized BSA/collagen coating. Materials Science and Engineering C, 2016, 66, 66-76.	3.8	10
58	Lightâ€Induced Cellâ€Sheet Harvest on TiO ₂ Films Sensitized with Carbon Quantum Dots. ChemPlusChem, 2016, 81, 1166-1173.	1.3	6
59	Mesenchymal stem cells in response to exposed rod-heights of TiO2 nanorod films. RSC Advances, 2016, 6, 67778-67784.	1.7	6
60	Light-Induced Cell-Sheet Harvest on TiO2 Films Sensitized with Carbon Quantum Dots. ChemPlusChem, 2016, 81, 1135-1135.	1.3	0
61	A Multifunctional Nanocrystalline CaF ₂ :Tm,Yb@mSiO ₂ System for Dualâ€Triggered and Optically Monitored Doxorubicin Delivery. Particle and Particle Systems Characterization, 2016, 33, 896-905.	1.2	19
62	Spatially-controlled distribution of HACC in mineralized collagen coatings for improving rhBMP-2 loading and release behavior. Colloids and Surfaces B: Biointerfaces, 2016, 145, 114-121.	2.5	7
63	Modulation of protein behavior through light responses of TiO2 nanodots films. Scientific Reports, 2015, 5, 13354.	1.6	11
64	Enhanced biological performance on nano-microstructured surfaces assembled by SrTiO ₃ cubic nanocrystals. RSC Advances, 2015, 5, 67896-67900.	1.7	3
65	Effect of Pt/C addition to TiO2 films on adhesion and rapid light-induced detachment of mammalian cell cultures. Thin Solid Films, 2015, 584, 18-22.	0.8	3
66	Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Advances, 2015, 5, 55474-55477.	1.7	5
67	Influence of integration of TiO2 nanorods into its nanodot films on pre-osteoblast cell responses. Colloids and Surfaces B: Biointerfaces, 2015, 126, 387-393.	2.5	11
68	Alternating potentials assisted electrochemical deposition of mineralized collagen coatings. Colloids and Surfaces B: Biointerfaces, 2015, 136, 479-487.	2.5	12
69	Improved light-induced cell detachment on rutile TiO2 nanodot films. Acta Biomaterialia, 2015, 26, 347-354.	4.1	20
70	Near-infrared luminescent CaTiO ₃ :Nd ³⁺ nanofibers with tunable and trackable drug release kinetics. Journal of Materials Chemistry B, 2015, 3, 7449-7456.	2.9	34
71	pH-Triggered SrTiO ₃ :Er Nanofibers with Optically Monitored and Controlled Drug Delivery Functionality. ACS Applied Materials & Interfaces, 2015, 7, 25514-25521.	4.0	25
72	APPLICATION OF DENDRIMER/PLASMID hBMP-2 COMPLEXES LOADED INTO Î ² -TCP/COLLAGEN SCAFFOLD IN THE TREATMENT OF FEMORAL DEFECTS IN RATS. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450005.	0.3	1

#	Article	IF	CITATIONS
73	Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014, 7, 1311-1318.	5.8	73
74	A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds. Colloids and Surfaces B: Biointerfaces, 2014, 122, 785-791.	2.5	20
75	Ferroelectric/ferrimagnetic composite ceramics with depressed interfacial reaction and low dielectric loss. Applied Physics Letters, 2014, 105, 162902.	1.5	5
76	Surface hydroxyl groups direct cellular response on amorphous and anatase TiO 2 nanodots. Colloids and Surfaces B: Biointerfaces, 2014, 123, 68-74.	2.5	48
77	Effect of mineralization agents on the surface structure and dielectric properties of SrTiO ₃ nanocrystals. CrystEngComm, 2014, 16, 10750-10753.	1.3	7
78	Facet-Specific Assembly of Proteins on SrTiO3 Polyhedral Nanocrystals. Scientific Reports, 2014, 4, 5084.	1.6	35
79	Enhanced integrin-mediated human osteoblastic adhesion to porous amorphous calcium phosphate/poly (L-lactic acid) composite. Chinese Medical Journal, 2014, 127, 3443-8.	0.9	3
80	Incorporation of chitosan nanospheres into thin mineralized collagen coatings for improving the antibacterial effect. Colloids and Surfaces B: Biointerfaces, 2013, 111, 536-541.	2.5	20
81	Ag-silica composite nanotube with controlled wall structures for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2013, 111, 693-698.	2.5	8
82	Mineralized collagen coatings formed by electrochemical deposition. Journal of Materials Science: Materials in Medicine, 2013, 24, 2709-2718.	1.7	27
83	Titanium dioxide nanorod-based amperometric sensor for highly sensitive enzymatic detection of hydrogen peroxide. Mikrochimica Acta, 2013, 180, 1487-1493.	2.5	9
84	Light-induced cell detachment for cell sheet technology. Biomaterials, 2013, 34, 11-18.	5.7	89
85	Exchange coupling controlled ferrite with dual magnetic resonance and broad frequency bandwidth in microwave absorption. Science and Technology of Advanced Materials, 2013, 14, 045002.	2.8	67
86	Colossal Permittivity and Variable-Range-Hopping Conduction of Polarons in Ni _{0.5} Zn _{0.5} Fe ₂ O ₄ Ceramic. Journal of Physical Chemistry C, 2013, 117, 12966-12972.	1.5	75
87	Ferroelectric/ferromagnetic ceramic composite and its hybrid permittivity stemming from hopping charge and conductivity inhomogeneity. Journal of Applied Physics, 2013, 113, .	1.1	47
88	Nano conductive particle dispersed percolative thin film ceramics with high permittivity and high tunability. Applied Physics Letters, 2012, 100, 132909.	1.5	19
89	Highly sensitive hydrogen peroxide biosensors based on TiO2 nanodots/ITO electrodes. Journal of Materials Chemistry, 2012, 22, 9019.	6.7	34
90	Shape-controlled synthesis of lead zirconate titanate nanocrystallites, microrods, microrolls and 3D complex architectures via the effects of poly-vinylalcohol macromolecular conformation. CrystEngComm, 2012, 14, 6783.	1.3	8

#	Article	IF	CITATIONS
91	Preparation and antibiotic drug release of mineralized collagen coatings on titanium. Journal of Materials Science: Materials in Medicine, 2012, 23, 2413-2423.	1.7	31
92	Dipole azimuth dependent permittivity in randomly and (100) oriented (Pb,Sr)TiO3 thin films. Journal of Materials Chemistry, 2011, 21, 10808.	6.7	19
93	High dielectric tunability of (100) oriented PbxSr1â°xTiO3 thin film coordinately controlled by dipole activation and phase anisotropy. Journal of Applied Physics, 2011, 110, 124107.	1.1	20
94	Zn-Releasing FHA Coating and Its Enhanced Osseointegration Ability. Journal of the American Ceramic Society, 2011, 94, 255-260.	1.9	18
95	TiO2 nanorod films grown on Si wafers by a nanodot-assisted hydrothermal growth. Thin Solid Films, 2011, 519, 7644-7649.	0.8	29
96	Effect of Zn doping on structure and ferroelectric properties of PST thin films prepared by sol–gel method. Journal of Materials Science: Materials in Electronics, 2011, 22, 351-358.	1.1	4
97	Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates. Thin Solid Films, 2011, 519, 4634-4640.	0.8	49
98	A study on CSC-derived Ba2Ti9O20 phase formation and its dielectric property. Journal of Materials Science: Materials in Electronics, 2010, 21, 416-420.	1.1	0
99	Super High Threshold Percolative Ferroelectric/Ferrimagnetic Composite Ceramics with Outstanding Permittivity and Initial Permeability. Angewandte Chemie, 2010, 122, 2127-2127.	1.6	0
100	Super High Threshold Percolative Ferroelectric/Ferrimagnetic Composite Ceramics with Outstanding Permittivity and Initial Permeability. Angewandte Chemie - International Edition, 2010, 49, 2083-2083.	7.2	0
101	Singleâ€Crystalâ€like Mesoporous SrTiO ₃ Spheres with Enhanced Photocatalytic Performance. Journal of the American Ceramic Society, 2010, 93, 1297-1305.	1.9	33
102	Preparation of titanium silicide nanowires by APCVD method. , 2010, , .		0
103	Initial permeability of percolative PbTiO3/NiFe2O4 composite ceramics by a sol–gel in situ process. Journal of Materials Chemistry, 2010, 20, 10856.	6.7	20
104	Size- and density-controlled synthesis of TiO ₂ nanodots on a substrate by phase-separation-induced self-assembly. Nanotechnology, 2009, 20, 215605.	1.3	27
105	Preparation and characterization of novel biphasic calcium phosphate powders (α-TCP/HA) derived from carbonated amorphous calcium phosphates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 508-517.	1.6	54
106	Size-dependent ultraviolet luminescence and low-field electron emission of TiO ₂ nanodots formed by phase-separation-induced self-assembly. Journal Physics D: Applied Physics, 2009, 42, 105414.	1.3	18
107	Effect of Heat Treatment Temperature on the Formation of Ag Nanoparticles in Ag-PbTiO ₃ Composite Thin Films. Ferroelectrics, 2009, 387, 161-166.	0.3	2
108	Synthesis and properties of SDC powders and ceramics for low temperature SOFC by stearic acid process. Journal of Electroceramics, 2008, 21, 698-701.	0.8	4

#	Article	IF	CITATIONS
109	Colloidal spray pyrolysis preparation and characterization of nanocrystalline NiO-SDC composite powders for SOFCs. Journal of Electroceramics, 2008, 21, 702-705.	0.8	1
110	Preparation of Nano Carbonate‣ubstituted Hydroxyapatite from an Amorphous Precursor. International Journal of Applied Ceramic Technology, 2008, 5, 442-448.	1.1	23
111	DIELECTRIC BEHAVIOR OF NOVEL ACETYLENE BLACK–PVDF/BaTiO3 TRI-PHASE COMPOSITE FILM. Surface Review and Letters, 2008, 15, 19-22.	0.5	4
112	Ag nanoparticle dispersed PbTiO3 percolative composite thin film with high permittivity. Applied Physics Letters, 2008, 93, 222901.	1.5	41
113	Nucleation and growth of TiSi2 thin films deposited on glass by atmospheric pressure chemical vapor deposition. Journal of Applied Physics, 2007, 101, 033539.	1.1	12
114	Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Applied Physics Letters, 2007, 90, 132907.	1.5	32
115	Percolative conductor/polymer composite films with significant dielectric properties. Applied Physics Letters, 2007, 91, .	1.5	100
116	Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Applied Physics Letters, 2007, 91, .	1.5	130
117	Mineralizer-Assisted Hydrothermal Synthesis and Characterization of BiFeO3Nanoparticles. Journal of the American Ceramic Society, 2007, 90, 2615-2617.	1.9	103
118	Alkali Metal Ions-Assisted Controllable Synthesis of Bismuth Ferrites by a Hydrothermal Method. Journal of the American Ceramic Society, 2007, 90, 3673-3675.	1.9	53
119	Effect of lead on formation and dielectric tunability of (Pbx,Sr1â^'x)0.85Bi0.1TiO3 thin films. Frontiers of Materials Science in China, 2007, 1, 59-64.	0.5	0
120	PREPARATION AND MORPHOLOGY OF POROUS NANOCALCIUM PHOSPHATE/POLY(L-LACTIC ACID) COMPOSITES. International Journal of Nanoscience, 2005, 04, 517-523.	0.4	0
121	Effect of Pluronic F127 on the pore structure of macrocellular biodegradable polylactide foams. Polymers for Advanced Technologies, 2004, 15, 425-430.	1.6	16
122	Preparation of amorphous calcium phosphate in the presence of poly(ethylene glycol). Journal of Materials Science Letters, 2003, 22, 1015-1016.	0.5	44
123	Low temperature preparation of hydroxyapatite coatings on titanium alloy by a sol-gel route. Journal of Materials Science Letters, 2000, 19, 2187-2188.	0.5	21
124	The alkoxide sol-gel process in the calcium phosphate system and its applications. Applied Organometallic Chemistry, 1999, 13, 555-564.	1.7	16
125	Preparation and Characterization of Hydroxyapatite Coatings on Ti6Al4V Alloy by a Solâ€Gel Method. Journal of the American Ceramic Society, 1999, 82, 27-32.	1.9	106
126	Sol-gel derived porous hydroxyapatite coatings. , 1998, 9, 159-163.		112

#	Article	IF	CITATIONS
127	Title is missing!. Journal of Materials Science Letters, 1997, 16, 877-879.	0.5	7
128	Synthesis of calcium phosphates by PO(OH) x (OBut)3â^'x and CaO2C2H4. Journal of Sol-Gel Science and Technology, 1997, 8, 645-649.	1.1	6
129	The effect of different monocarboxylic acids on the gelation behaviour of Cu ethoxide. Journal of Sol-Gel Science and Technology, 1996, 6, 251-256.	1.1	0
130	The drawing behavior of Y-Ba-Cu-O sol from non-aqueous solution by a complexing process. Journal of Sol-Gel Science and Technology, 1995, 4, 187-193.	1.1	9