Kubilay Tekin

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6880371/kubilay-tekin-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

39	1,263 citations	17	35
papers		h-index	g-index
43	1,486 ext. citations	5.9	5.19
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
39	Use of a Lewis acid, a Brfisted acid, and their binary mixtures for the liquefaction of lignocellulose by supercritical ethanol processing. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 5445-5453	5.8	1
38	Effects of hydrothermal carbonization on products from fast pyrolysis of cellulose. <i>Journal of the Energy Institute</i> , 2021 , 99, 299-306	5.7	1
37	Activated carbons from co-carbonization of waste truck tires and spent tea leaves. <i>Sustainable Chemistry and Pharmacy</i> , 2021 , 21, 100410	3.9	10
36	Hydrothermal liquefaction of olive oil residues. Sustainable Chemistry and Pharmacy, 2021 , 22, 100476	3.9	3
35	Use of a Lewis acid, a Brfisted acid, and their binary mixtures for the hydrothermal liquefaction of lignocellulose. <i>Fuel</i> , 2021 , 304, 121398	7.1	5
34	One-step transformation of biomass to fuel precursors using a bi-functional combination of Pd/C and water tolerant Lewis acid. <i>Fuel</i> , 2020 , 277, 118200	7.1	10
33	Hydrothermal carbonization of lignocellulosic biomass and effects of combined Lewis and Brlisted acid catalysts. <i>Fuel</i> , 2020 , 279, 118458	7.1	17
32	Microporous activated carbons from lignocellulosic biomass by KOH activation. <i>Fullerenes Nanotubes and Carbon Nanostructures</i> , 2020 , 28, 1030-1037	1.8	10
31	Sustainable energy and fuels from biomass: a review focusing on hydrothermal biomass processing. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 4390-4414	5.8	47
30	Hydrothermal and supercritical ethanol processing of woody biomass with a high-silica zeolite catalyst. <i>Biomass Conversion and Biorefinery</i> , 2019 , 9, 669-680	2.3	8
29	One-pot transformation of lignocellulosic biomass into crude bio-oil with metal chlorides via hydrothermal and supercritical ethanol processing. <i>Bioresource Technology</i> , 2019 , 288, 121500	11	15
28	Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina. <i>Energy & Doped State of the Energy & Energy & Doped State of the Energy & Do</i>	4.1	27
27	Co-hydrothermal Liquefaction of Lignocellulosic Biomass with Kukersite Oil Shale. <i>Energy & Energy & E</i>	4.1	5
26	Influence of Co-Pyrolysis of Waste Tetra Pak with Waste Motor Oil on Product Distribution and Properties for Fuel Application. <i>Energy & Distribution</i> 23, 11101-11112	4.1	16
25	Production of crude bio-oil and biochar from hydrothermal conversion of jujube stones with metal carbonates. <i>Biofuels</i> , 2018 , 9, 613-623	2	3
24	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. <i>ChemSusChem</i> , 2018 , 11, 3559-3575	8.3	45
23	Alkali-catalyzed hydrothermal treatment of sawdust for production of a potential feedstock for catalytic gasification. <i>Applied Energy</i> , 2018 , 231, 594-599	10.7	5

22	Deconstruction of lignocellulosic biomass with hydrated cerium (III) chloride in water and ethanol. <i>Applied Catalysis A: General</i> , 2017 , 546, 67-78	5.1	11
21	Supercritical fluid extraction of biofuels from biomass. <i>Environmental Chemistry Letters</i> , 2017 , 15, 29-41	13.3	34
20	Mesoporous Adsorbents from Biomass: Opportunities and Challenges in Hydrothermal Treatment 2017 , 225-254		O
19	Experimental design for extraction of bio-oils from flax seeds under supercritical ethanol conditions. <i>Clean Technologies and Environmental Policy</i> , 2016 , 18, 461-471	4.3	11
18	The effects of water tolerant Lewis acids on the hydrothermal liquefaction of lignocellulosic biomass. <i>Journal of the Energy Institute</i> , 2016 , 89, 627-635	5.7	30
17	Cellulose-derived carbon spheres produced under supercritical ethanol conditions. <i>Clean Technologies and Environmental Policy</i> , 2016 , 18, 331-338	4.3	11
16	Adsorption of Pb(II) and Cd(II) Ions Onto Dye-Attached Sawdust. Clean - Soil, Air, Water, 2016, 44, 339-34	4 4 .6	3
15	Preconcentration of Bismuth(III) by Ultrasound Assisted Emulsification Solidified Floating Organic Drop Microextraction and Analysis by Atomic Absorption Spectrometry. <i>Clean - Soil, Air, Water</i> , 2016 , 44, 356-361	1.6	6
14	Ultrasound bath-assisted extraction of essential oils from clove using central composite design. <i>Industrial Crops and Products</i> , 2015 , 77, 954-960	5.9	65
13	Sage oil extraction and optimization by response surface methodology. <i>Industrial Crops and Products</i> , 2015 , 76, 829-835	5.9	20
12	Pyrolysis of agricultural residues for bio-oil production. <i>Clean Technologies and Environmental Policy</i> , 2015 , 17, 211-223	4.3	40
11	Hydrothermal Conversion of Russian Olive Seeds into Crude Bio-oil Using a CaO Catalyst Derived from Waste Mussel Shells. <i>Energy & Description</i> (2015), 29, 4382-4392	4.1	28
10	A review of hydrothermal biomass processing. Renewable and Sustainable Energy Reviews, 2014, 40, 673	3- <u>668</u> 7	378
9	Hydrothermal conversion of woody biomass with disodium octaborate tetrahydrate and boric acid. <i>Industrial Crops and Products</i> , 2013 , 49, 334-340	5.9	16
8	Non-catalytic and catalytic hydrothermal liquefaction of biomass. <i>Research on Chemical Intermediates</i> , 2013 , 39, 485-498	2.8	64
7	Hydrothermal wood processing using borax decahydrate and sodium borohydride. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 68-72	6	14
6	Effect of sodium perborate monohydrate concentrations on product distributions from the hydrothermal liquefaction of Scotch pine wood. <i>Fuel Processing Technology</i> , 2013 , 110, 17-23	7.2	22
5	t-BuOK catalyzed bio-oil production from woody biomass under sub-critical water conditions. <i>Environmental Chemistry Letters</i> , 2013 , 11, 25-31	13.3	22

4	, 2012 , 110, 682-7	11	97
3	Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. <i>Journal of Supercritical Fluids</i> , 2012 , 72, 134-139	4.2	62
2	Catalytic degradation of waste polypropylene by pyrolysis. <i>Journal of the Energy Institute</i> , 2012 , 85, 150	-\$ <i>5</i> 5	12
1	Preparation and characterization of composite cryogels containing imidazole group and use in heavy metal removal. <i>Reactive and Functional Polymers</i> , 2011 , 71, 985-993	4.6	87