Jacinta Collado-GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6880319/publications.pdf

Version: 2024-02-01

#	ARTICLE	IF	CITATIONS
1	Effects triggered by foliar selenium application on growth, enzyme activities, mineral nutrients and carbohydrates in lettuce under an aquaculture system. Plant Physiology and Biochemistry, 2022, 180, 1-8.	5.8	5
2	Unraveling the nutritional and bioactive constituents in baby-leaf lettuce for challenging climate conditions. Food Chemistry, 2022, 384, 132506.	8.2	6
3	Effects of Selenium on the Chlorophylls, Gas Exchange, Antioxidant Activity and Amino Acid Composition of Lettuce Grown under an Aquaponics System. Horticulturae, 2022, 8, 30.	2.8	8
4	Enhancement of Bioactive Constituents in Fresh Cauliflower By-Products in Challenging Climate Conditions. Antioxidants, 2022, 11, 958.	5.1	0
5	Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica) Tj ETQq1 1 0.784	-314 rgBT 3.6	/Oygrlock 10
6	How does water stress affect the low molecular weight phenolics of hydroSOStainable almonds?. Food Chemistry, 2021, 339, 127756.	8.2	5
7	Correlation between water stress and phenolic compounds of hydroSOStainable almonds. Journal of the Science of Food and Agriculture, 2021, 101, 3065-3070.	3.5	2
8	Foliar application of putrescine before a shortâ€ŧerm heat stress improves the quality of melon fruits () Tj ETQq0	о <u>9</u> _{.fg} вт	Overlock 10
9	Effects of Different Nitrogen Forms and Exogenous Application of Putrescine on Heat Stress of Cauliflower: Photosynthetic Gas Exchange, Mineral Concentration and Lipid Peroxidation. Plants, 2021, 10, 152.	3.5	18
10	The Effect of Foliar Putrescine Application, Ammonium Exposure, and Heat Stress on Antioxidant Compounds in Cauliflower Waste. Antioxidants, 2021, 10, 707.	5.1	11
11	Merging Heat Stress Tolerance and Health-Promoting Properties: The Effects of Exogenous Arginine in Cauliflower (Brassica oleracea var. botrytis L.). Foods, 2021, 10, 30.	4.3	10
12	Effects of Deficit Irrigation, Rootstock, and Roasting on the Contents of Fatty Acids, Phytoprostanes, and Phytofurans in Pistachio Kernels. Journal of Agricultural and Food Chemistry, 2020, 68, 8915-8924.	5.2	14
13	Exogenous Salicylic Acid Modulates the Response to Combined Salinity-Temperature Stress in Pepper Plants (Capsicum annuum L. var. Tamarin). Plants, 2020, 9, 1790.	3.5	15
14	Bioactive plant oxylipins-based lipidomics in eighty worldwide commercial dark chocolates: Effect of cocoa and fatty acid composition on their dietary burden. Microchemical Journal, 2020, 157, 105083.	4.5	7
15	Differential Effects of Aquaponic Production System on Melon (<i>Cucumis melo</i> L.) Fruit Quality. Journal of Agricultural and Food Chemistry, 2020, 68, 6511-6519.	5.2	7
16	Phytoprostanes and Phytofurans—Oxidative Stress and Bioactive Compounds—in Almonds are Affected by Deficit Irrigation in Almond Trees. Journal of Agricultural and Food Chemistry, 2020, 68, 7214-7225.	5.2	20
17	Criteria for HydroSOS Quality Index. Application to Extra Virgin Olive Oil and Processed Table Olives. Water (Switzerland), 2020, 12, 555.	2.7	6
18	Effect of preharvest fruit bagging on fruit quality characteristics and incidence of fruit physiopathies in fully irrigated and water stressed pomegranate trees. Journal of the Science of Food and Agriculture, 2019, 99, 1425-1433.	3.5	12

#	Article	IF	CITATIONS
19	Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chemistry, 2019, 272, 227-234.	8.2	29
20	Evaluation of growers' efforts to improve the sustainability of olive orchards: Development of the hydroSOStainable index. Scientia Horticulturae, 2019, 257, 108661.	3.6	11
21	Functional and sensory properties of pistachio nuts as affected by cultivar. Journal of the Science of Food and Agriculture, 2019, 99, 6696-6705.	3.5	22
22	Determination of microbiological contamination, antibacterial and antioxidant activities of natural plant hazelnut (<i>Corylus avellana</i> L.) pollen. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019, 54, 525-532.	1.5	14
23	Reducing incidence of peel physiopathies and increasing antioxidant activity in pomegranate fruit under different irrigation conditions by preharvest application of chitosan. Scientia Horticulturae, 2019, 247, 247-253.	3.6	4
24	Potential of <scp> <i>Physalis peruviana </i> </scp> calyces as a lowâ€cost valuable resource of phytoprostanes and phenolic compounds. Journal of the Science of Food and Agriculture, 2019, 99, 2194-2204.	3.5	34
25	Volatile composition and sensory and quality attributes of quince (Cydonia oblonga Mill.) fruits as affected by water stress. Scientia Horticulturae, 2019, 244, 68-74.	3.6	21
26	Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems. Agricultural Water Management, 2018, 202, 311-324.	5.6	116
27	Influence of deficit irrigation and crop load on the yield and fruit quality in <i>Wonderful</i> and <i>Mollar de Elche</i> pomegranates. Journal of the Science of Food and Agriculture, 2018, 98, 3098-3108.	3.5	31
28	Sustainability of the Legal Endowments of Water in Almond Trees and a New Generation of High Quality Hydrosustainable Almonds. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Food Science and Technology, 2018, 75, 97.	0.1	8
29	Fruit Response to Water-Scarcity Scenarios. Water Relations and Biochemical Changes. , 2018, , 349-375.		5
30	Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radical Research, 2017, 51, 141-147.	3.3	24
31	Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chemistry, 2017, 229, 1-8.	8.2	63
32	Inhibition of α-glucosidase and α-amylase by Spanish extra virgin olive oils: The involvement of bioactive compounds other than oleuropein and hydroxytyrosol. Food Chemistry, 2017, 235, 298-307.	8.2	54
33	Valorization Strategy of Banana Passion Fruit Shell Wastes: An Innovative Source of Phytoprostanes and Phenolic Compounds and Their Potential Use in Pharmaceutical and Cosmetic Industries. Journal of Food and Nutrition Research (Newark, Del), 2017, 5, 801-808.	0.3	16
34	Impact of packaging atmosphere, storage and processing conditions on the generation of phytoprostanes as quality processing compounds in almond kernels. Food Chemistry, 2016, 211, 869-875.	8.2	32
35	Effect of the season on the free phytoprostane content in Cornicabra extra virgin olive oil from deficitâ€irrigated olive trees. Journal of the Science of Food and Agriculture, 2016, 96, 1585-1592.	3.5	19
36	Jujube fruit water relations at fruit maturation in response to water deficits. Agricultural Water Management, 2016, 164, 110-117.	5.6	16

#	Article	IF	CITATIONS
37	Phytoprostanes. Lipid Technology, 2015, 27, 127-130.	0.3	29
38	Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Advances, 2015, 5, 51233-51241.	3.6	35
39	New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chemistry, 2015, 178, 212-220.	8.2	51
40	Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. Journal of Agricultural and Food Chemistry, 2015, 63, 6466-6474.	5.2	40
41	The phytoprostane content in green table olives is influenced by Spanish-style processing and regulated deficit irrigation. LWT - Food Science and Technology, 2015, 64, 997-1003.	5.2	34
42	Effect of Fermentation and Subsequent Pasteurization Processes on Amino Acids Composition of Orange Juice. Plant Foods for Human Nutrition, 2015, 70, 153-159.	3.2	22
43	Water Deficit during Pit Hardening Enhances Phytoprostanes Content, a Plant Biomarker of Oxidative Stress, in Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2015, 63, 3784-3792.	5.2	27
44	Rainfall intensifies fruit peel cracking in water stressed pomegranate trees. Agricultural and Forest Meteorology, 2014, 194, 29-35.	4.8	60
45	Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Research International, 2014, 65, 375-384.	6.2	68
46	Phytochemical and quality attributes of pomegranate fruits for juice consumption as affected by ripening stage and deficit irrigation. Journal of the Science of Food and Agriculture, 2014, 94, 2259-2265.	3.5	39
47	Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Macedonian Journal of Chemistry and Chemical Engineering, 2014, 33, 105.	0.6	31
48	Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice. Journal of the Science of Food and Agriculture, 2013, 93, 1922-1927.	3.5	49
49	Quantification by UHPLC of total individual polyphenols in fruit juices. Food Chemistry, 2013, 138, 938-949.	8.2	98
50	Effect of Water Deficit and Domestic Storage on the Procyanidin Profile, Size, and Aggregation Process in Pear-Jujube (<i>Z. jujuba)</i> Fruits. Journal of Agricultural and Food Chemistry, 2013, 61, 6187-6197.	5.2	28