
Emrah Eroglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6880265/publications.pdf Version: 2024-02-01

Емран Еросии

#	Article	IF	CITATIONS
1	Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metabolism, 2020, 31, 642-653.e6.	16.2	202
2	Novel genetically encoded fluorescent probes enable real-time detection of potassium in vitro and in vivo. Nature Communications, 2017, 8, 1422.	12.8	130
3	pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sensors, 2019, 4, 883-891.	7.8	99
4	Real-Time Imaging of Mitochondrial ATP Dynamics Reveals the Metabolic Setting of Single Cells. Cell Reports, 2018, 25, 501-512.e3.	6.4	91
5	MICU1 controls cristae junction and spatially anchors mitochondrial Ca2+ uniporter complex. Nature Communications, 2019, 10, 3732.	12.8	90
6	Development of novel FP-based probes for live-cell imaging of nitric oxide dynamics. Nature Communications, 2016, 7, 10623.	12.8	84
7	Resveratrol Specifically Kills Cancer Cells by a Devastating Increase in the Ca2+ Coupling Between the Greatly Tethered Endoplasmic Reticulum and Mitochondria. Cellular Physiology and Biochemistry, 2016, 39, 1404-1420.	1.6	84
8	PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca2+ uptake in immortalized cells. Nature Communications, 2016, 7, 12897.	12.8	59
9	Live cell imaging of signaling and metabolic activities. , 2019, 202, 98-119.		41
10	Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20210-20217.	7.1	40
11	Genetic biosensors for imaging nitric oxide in single cells. Free Radical Biology and Medicine, 2018, 128, 50-58.	2.9	36
12	Formation of Nitric Oxide by Aldehyde Dehydrogenase-2 Is Necessary and Sufficient for Vascular Bioactivation of Nitroglycerin. Journal of Biological Chemistry, 2016, 291, 24076-24084.	3.4	31
13	Sirtuin 6 (SIRT6) regulates redox homeostasis and signaling events in human articular chondrocytes. Free Radical Biology and Medicine, 2021, 166, 90-103.	2.9	30
14	Intact mitochondrial Ca 2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radical Biology and Medicine, 2017, 102, 248-259.	2.9	28
15	Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum. Sensors, 2015, 15, 13052-13068.	3.8	26
16	Differential endothelial signaling responses elicited by chemogenetic H2O2 synthesis. Redox Biology, 2020, 36, 101605.	9.0	24
17	Real-time visualization of distinct nitric oxide generation of nitric oxide synthase isoforms in single cells. Nitric Oxide - Biology and Chemistry, 2017, 70, 59-67.	2.7	22
18	Reversal of heart failure in a chemogenetic model of persistent cardiac redox stress. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H617-H626.	3.2	22

Emrah Eroglu

#	Article	IF	CITATIONS
19	Application of Genetically Encoded Fluorescent Nitric Oxide (NO•) Probes, the geNOps, for Real-time Imaging of NO• Signals in Single Cells. Journal of Visualized Experiments, 2017, , .	0.3	16
20	Metabolomic and transcriptomic signatures of chemogenetic heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H451-H465.	3.2	14
21	Development and Application of Sub-Mitochondrial Targeted Ca2 + Biosensors. Frontiers in Cellular Neuroscience, 2019, 13, 449.	3.7	11
22	Real-Time Imaging of Nitric Oxide Signals in Individual Cells Using geNOps. Methods in Molecular Biology, 2018, 1747, 23-34.	0.9	8
23	Chemogenetic Approaches to Probe Redox Pathways: Implications for Cardiovascular Pharmacology and Toxicology, 2022, 62, 551-571.	9.4	8
24	Complexities of the chemogenetic toolkit: Differential mDAAO activation by d-amino substrates and subcellular targeting. Free Radical Biology and Medicine, 2021, 177, 132-142.	2.9	8
25	Sustained Formation of Nitroglycerin-Derived Nitric Oxide by Aldehyde Dehydrogenase-2 in Vascular Smooth Muscle without Added Reductants: Implications for the Development of Nitrate Tolerance. Molecular Pharmacology, 2018, 93, 335-343.	2.3	7
26	A Co-Culture-Based Multiparametric Imaging Technique to Dissect Local H2O2 Signals with Targeted HyPer7. Biosensors, 2021, 11, 338.	4.7	7
27	Nitric oxide biosensor uncovers diminished ferrous iron-dependency of cultured cells adapted to physiological oxygen levels. Redox Biology, 2022, 53, 102319.	9.0	7
28	Filling a GAP—An Optimized Probe for ER Ca 2+ Imaging InÂVivo. Cell Chemical Biology, 2016, 23, 641-643.	5.2	2
29	Chemogenetic approaches to dissect the role of H2O2 in redox-dependent pathways using genetically encoded biosensors. Biochemical Society Transactions, 2022, 50, 335-345.	3.4	2
30	High-Resolution Imaging of STIM/Orai Subcellular Localization Using Array Confocal Laser Scanning Microscopy. Methods in Molecular Biology, 2018, 1843, 175-187.	0.9	1
31	Development of novel fluorescent protein-based probes for live-cell imaging of nitric oxide dynamics. Free Radical Biology and Medicine, 2016, 96, S18.	2.9	0
32	In vivo applications of chemogenetics in redox (patho)biology. , 2020, , 97-112.		0
33	Yes (again) to local NO. Nature Chemical Biology, 2020, 16, 606-607.	8.0	0