Limin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6880139/publications.pdf

Version: 2024-02-01

933447 888059 18 447 10 17 h-index citations g-index papers 18 18 18 442 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water. Journal of the American Chemical Society, 2020, 142, 5583-5593.	13.7	88
2	Generation and stability of bulk nanobubbles: A review and perspective. Current Opinion in Colloid and Interface Science, 2021, 53, 101439.	7.4	69
3	The Role of Nanobubbles in the Precipitation and Recovery of Organic-Phosphine-Containing Beneficiation Wastewater. Langmuir, 2018, 34, 6217-6224.	3.5	54
4	Formation and Stability of Bulk Nanobubbles by Vibration. Langmuir, 2020, 36, 2264-2270.	3.5	47
5	Biomembrane induced <i>in situ</i> self-assembly of peptide with enhanced antimicrobial activity. Biomaterials Science, 2020, 8, 2031-2039.	5.4	47
6	Formation and Stability of Surface/Bulk Nanobubbles Produced by Decompression at Lower Gas Concentration. Journal of Physical Chemistry C, 2018, 122, 22418-22423.	3.1	42
7	Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface Nanobubbles. Langmuir, 2019, 35, 2498-2505.	3.5	26
8	Collective Dynamics of Bulk Nanobubbles with Size-Dependent Surface Tension. Langmuir, 2021, 37, 7986-7994.	3.5	16
9	Label-Free and Three-Dimensional Visualization Reveals the Dynamics of Plasma Membrane-Derived Extracellular Vesicles. Nano Letters, 2020, 20, 6313-6319.	9.1	15
10	Size-Dependent Stiffness of Nanodroplets: A Quantitative Analysis of the Interaction between an AFM Probe and Nanodroplets. Langmuir, 2016, 32, 11230-11235.	3.5	10
11	Wetting Behavior of Surface Nanodroplets Regulated by Periodic Nanostructured Surfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55726-55734.	8.0	7
12	Assembly of peptides in mica–graphene nanocapillaries controlled by confined water. Nanoscale, 2019, 11, 8210-8218.	5.6	6
13	Surface Nanobubbles Produced by Cold Water Investigated Using Scanning Transmission X-ray Microscopy. Microscopy and Microanalysis, 2018, 24, 470-471.	0.4	4
14	Mechanical Properties of Sub-Microbubbles with a Nanoparticle-Decorated Polymer Shell. Langmuir, 2019, 35, 17090-17095.	3.5	4
15	Influence of the Dissolved Gas on the Interfacial Properties of Decane Surface Nanodroplets. Langmuir, 2022, 38, 2213-2219.	3.5	4
16	Theoretical Analysis on the Stability of Single Bulk Nanobubble. Frontiers in Materials, 2022, 9, .	2.4	3
17	Formation of Bulk Nanobubbles Induced by Accelerated Electrons Irradiation: Dependences on Dose Rates and Doses of Irradiation. Langmuir, $\hat{0}$, , .	3.5	3
18	Nanobubbles produced by hydraulic air compression technique. Chinese Physics B, 2022, 31, 054702.	1.4	2