
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879747/publications.pdf Version: 2024-02-01

Уісні Іім

#	Article	lF	CITATIONS
1	A Genetically Encoded Tag for Correlated Light and Electron Microscopy of Intact Cells, Tissues, and Organisms. PLoS Biology, 2011, 9, e1001041.	2.6	731
2	Functional regeneration after laser axotomy. Nature, 2004, 432, 822-822.	13.7	543
3	Intrinsic Control of Axon Regeneration. Neuron, 2016, 90, 437-451.	3.8	469
4	The DLK-1 Kinase Promotes mRNA Stability and Local Translation in C. elegans Synapses and Axon Regeneration. Cell, 2009, 138, 1005-1018.	13.5	344
5	The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 1999, 401, 371-375.	13.7	324
6	Regulation of a DLK-1 and p38 MAP Kinase Pathway by the Ubiquitin Ligase RPM-1 Is Required for Presynaptic Development. Cell, 2005, 120, 407-420.	13.5	322
7	Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature, 1995, 378, 196-199.	13.7	303
8	Distinct Innate Immune Responses to Infection and Wounding in the C. elegans Epidermis. Current Biology, 2008, 18, 481-489.	1.8	267
9	Calcium and Cyclic AMP Promote Axonal Regeneration in Caenorhabditis elegans and Require DLK-1 Kinase. Journal of Neuroscience, 2010, 30, 3175-3183.	1.7	260
10	The <i>Caenorhabditis elegans</i> Gene <i>unc-25</i> Encodes Glutamic Acid Decarboxylase and Is Required for Synaptic Transmission But Not Synaptic Development. Journal of Neuroscience, 1999, 19, 539-548.	1.7	249
11	Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature, 1994, 372, 780-783.	13.7	247
12	Regulation of Presynaptic Terminal Organization by C. elegans RPM-1, a Putative Guanine Nucleotide Exchanger with a RING-H2 Finger Domain. Neuron, 2000, 26, 331-343.	3.8	216
13	UNC-16, a JNK-Signaling Scaffold Protein, Regulates Vesicle Transport in C. elegans. Neuron, 2001, 32, 787-800.	3.8	214
14	<i>Caenorhabditis elegans</i> neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15132-15137.	3.3	196
15	LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins. Current Biology, 2007, 17, 592-598.	1.8	188
16	SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nature Neuroscience, 2006, 9, 1479-1487.	7.1	187
17	Photo-inducible cell ablation in <i>Caenorhabditis elegans</i> using the genetically encoded singlet oxygen generating protein miniSOG. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7499-7504.	3.3	186
18	Axon Regeneration Pathways Identified by Systematic Genetic Screening in C.Âelegans. Neuron, 2011, 71, 1043-1057.	3.8	182

#	Article	lF	CITATIONS
19	lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature, 1998, 395, 78-82.	13.7	169
20	The SAD-1 Kinase Regulates Presynaptic Vesicle Clustering and Axon Termination. Neuron, 2001, 29, 115-129.	3.8	166
21	Optogenetic Inhibition of Synaptic Release with Chromophore-Assisted Light Inactivation (CALI). Neuron, 2013, 79, 241-253.	3.8	165
22	Molecular Mechanisms of Presynaptic Differentiation. Annual Review of Cell and Developmental Biology, 2008, 24, 237-262.	4.0	159
23	Coordinated Transcriptional Regulation of the <i>unc-25</i> Glutamic Acid Decarboxylase and the <i>unc-47</i> GABA Vesicular Transporter by the <i>Caenorhabditis elegans</i> UNC-30 Homeodomain Protein. Journal of Neuroscience, 1999, 19, 6225-6234.	1.7	151
24	Title is missing!. Nature, 1999, 401, 371-375.	13.7	151
25	Kinesin-13 and Tubulin Posttranslational Modifications Regulate Microtubule Growth in Axon Regeneration. Developmental Cell, 2012, 23, 716-728.	3.1	127
26	The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate inC. elegans. Development (Cambridge), 2004, 131, 819-828.	1.2	123
27	C. elegans RPM-1 Regulates Axon Termination and Synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron, 2007, 55, 587-601.	3.8	116
28	The Caenorhabditis elegans UNC-14 RUN Domain Protein Binds to the Kinesin-1 and UNC-16 Complex and Regulates Synaptic Vesicle Localization. Molecular Biology of the Cell, 2005, 16, 483-496.	0.9	112
29	A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans. PLoS Biology, 2009, 7, e1000265.	2.6	111
30	MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin-Mediated Axon Repulsion. Neuron, 2002, 34, 563-576.	3.8	109
31	Roles of endosomal trafficking in neurite outgrowth and guidance. Trends in Cell Biology, 2009, 19, 317-324.	3.6	108
32	SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nature Neuroscience, 2002, 5, 1137-1146.	7.1	107
33	The Two Isoforms of the Caenorhabditis elegans Leukocyte-Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation. Journal of Neuroscience, 2005, 25, 7517-7528.	1.7	102
34	Expression Profiling of GABAergic Motor Neurons in Caenorhabditis elegans. Current Biology, 2005, 15, 340-346.	1.8	100
35	Regulation of DLK-1 Kinase Activity by Calcium-Mediated Dissociation from an Inhibitory Isoform. Neuron, 2012, 76, 534-548.	3.8	98
36	The Basement Membrane Components Nidogen and Type XVIII Collagen Regulate Organization of Neuromuscular Junctions in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2003, 23, 3577-3587.	1.7	95

#	Article	IF	CITATIONS
37	Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 763-768.	3.3	92
38	Plasma-mediated ablation: an optical tool for submicrometer surgery on neuronal and vascular systems. Current Opinion in Biotechnology, 2009, 20, 90-99.	3.3	81
39	Excitatory motor neurons are local oscillators for backward locomotion. ELife, 2018, 7, .	2.8	79
40	Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. ELife, 2013, 2, e01180.	2.8	76
41	The Genetics of Axon Guidance and Axon Regeneration in <i>Caenorhabditis elegans</i> . Genetics, 2016, 204, 849-882.	1.2	75
42	Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones in <i>C. elegans</i> . Journal of Cell Biology, 2013, 203, 849-863.	2.3	69
43	Intermediate filaments are required for C. elegans epidermal elongation. Developmental Biology, 2004, 267, 216-229.	0.9	65
44	The <i>C. elegans</i> peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development (Cambridge), 2010, 137, 3603-3613.	1.2	64
45	The Microtubule Minus-End-Binding Protein Patronin/PTRN-1 Is Required for Axon Regeneration in C.Âelegans. Cell Reports, 2014, 9, 874-883.	2.9	64
46	UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration inC. elegans. Development (Cambridge), 2003, 130, 3147-3161.	1.2	63
47	Conserved Function of <i>Caenorhabditis elegans</i> UNC-30 and Mouse Pitx2 in Controlling GABAergic Neuron Differentiation. Journal of Neuroscience, 2001, 21, 6810-6819.	1.7	61
48	Dominant and recessive alleles of the Drosophila easter gene are point mutations at conserved sites in the serine protease catalytic domain. Cell, 1990, 60, 873-881.	13.5	56
49	A Neuronal piRNA Pathway Inhibits Axon Regeneration in C.Âelegans. Neuron, 2018, 97, 511-519.e6.	3.8	55
50	C. elegansankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis. Development (Cambridge), 2003, 130, 5791-5801.	1.2	54
51	TRPM Channels Modulate Epileptic-like Convulsions via Systemic Ion Homeostasis. Current Biology, 2011, 21, 883-888.	1.8	54
52	Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules. Neuron, 2019, 104, 290-304.e8.	3.8	51
53	Axon regeneration in C. elegans. Current Opinion in Neurobiology, 2014, 27, 199-207.	2.0	49
54	Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans. Journal of Biological Chemistry, 2016, 291, 7796-7804.	1.6	49

#	Article	IF	CITATIONS
55	Synaptogenesis: insights from worm and fly. Current Opinion in Neurobiology, 2002, 12, 71-79.	2.0	48
56	Neuropeptides Function in a Homeostatic Manner to Modulate Excitation-Inhibition Imbalance in C. elegans. PLoS Genetics, 2013, 9, e1003472.	1.5	47
57	Presynaptic terminal differentiation: transport and assembly. Current Opinion in Neurobiology, 2004, 14, 280-287.	2.0	46
58	Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. ELife, 2015, 4, .	2.8	45
59	The EBAX-type Cullin-RING E3 Ligase and Hsp90 Guard the Protein Quality of the SAX-3/Robo Receptor in Developing Neurons. Neuron, 2013, 79, 903-916.	3.8	44
60	Genetic dissection of axon regeneration. Current Opinion in Neurobiology, 2011, 21, 189-196.	2.0	43
61	The Liprin Homology Domain Is Essential for the Homomeric Interaction of SYD-2/Liprin-α Protein in Presynaptic Assembly. Journal of Neuroscience, 2011, 31, 16261-16268.	1.7	42
62	Nerve Regeneration in Caenorhabditis elegans After Femtosecond Laser Axotomy. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1283-1291.	1.9	41
63	Dynamic Microtubules Drive Circuit Rewiring in the Absence of Neurite Remodeling. Current Biology, 2015, 25, 1594-1605.	1.8	41
64	RAE-1, a Novel PHR Binding Protein, Is Required for Axon Termination and Synapse Formation in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2012, 32, 2628-2636.	1.7	39
65	The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons. Cell Reports, 2015, 11, 1737-1748.	2.9	39
66	Neuronal responses to stress and injury in <i>C. elegans</i> . FEBS Letters, 2015, 589, 1644-1652.	1.3	39
67	Microtubule-dependent ribosome localization in C. elegans neurons. ELife, 2017, 6, .	2.8	38
68	<i>Caenorhabditis elegans</i> Flamingo Cadherin <i>fmi-1</i> Regulates GABAergic Neuronal Development. Journal of Neuroscience, 2012, 32, 4196-4211.	1.7	37
69	Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports, 2018, 22, 3587-3597.	2.9	37
70	The JIP3 scaffold protein UNCâ€16 regulates RABâ€5 dependent membrane trafficking at <i>C. elegans</i> synapses. Developmental Neurobiology, 2009, 69, 174-190.	1.5	36
71	RIMB-1/RIM-Binding Protein and UNC-10/RIM Redundantly Regulate Presynaptic Localization of the Voltage-Gated Calcium Channel in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2019, 39, 8617-8631.	1.7	36
72	Cellular and molecular determinants targeting the <i>Caenorhabditis elegans</i> PHR protein RPMâ€1 to perisynaptic regions. Developmental Dynamics, 2008, 237, 630-639.	0.8	35

#	Article	IF	CITATIONS
73	A Two-Immunoglobulin-Domain Transmembrane Protein Mediates an Epidermal-Neuronal Interaction to Maintain Synapse Density. Neuron, 2016, 89, 325-336.	3.8	35
74	Synaptogenesis. WormBook, 2005, , 1-11.	5.3	35
75	Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration. ELife, 2018, 7, .	2.8	34
76	Genetic analysis of synaptic target recognition and assembly. Trends in Neurosciences, 2004, 27, 540-547.	4.2	33
77	Coordinated inhibition of C/EBP by Tribbles in multiple tissues is essential for Caenorhabditis elegans development. BMC Biology, 2016, 14, 104.	1.7	33
78	Leucine Zipper-bearing Kinase promotes axon growth in mammalian central nervous system neurons. Scientific Reports, 2016, 6, 31482.	1.6	32
79	Maternal Ribosomes Are Sufficient for Tissue Diversification during Embryonic Development in C.Âelegans. Developmental Cell, 2019, 48, 811-826.e6.	3.1	32
80	The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Development, 2013, 8, 10.	1.1	31
81	S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans. Journal of Neuroscience, 2014, 34, 758-763.	1.7	29
82	The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. Journal of Biology, 2006, 5, 9.	2.7	28
83	Motor Neuron Synapse and Axon Defects in a C. elegans Alpha-Tubulin Mutant. PLoS ONE, 2010, 5, e9655.	1.1	28
84	Optogenetic mutagenesis in Caenorhabditis elegans. Nature Communications, 2015, 6, 8868.	5.8	28
85	CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. ELife, 2016, 5, .	2.8	27
86	Myrf ER-Bound Transcription Factors Drive C.Âelegans Synaptic Plasticity via Cleavage-Dependent Nuclear Translocation. Developmental Cell, 2017, 41, 180-194.e7.	3.1	27
87	Neural circuit rewiring: insights from DD synapse remodeling. Worm, 2016, 5, e1129486.	1.0	26
88	Hyperactivation of B-Type Motor Neurons Results in Aberrant Synchrony of the <i>Caenorhabditis elegans</i> Motor Circuit. Journal of Neuroscience, 2013, 33, 5319-5325.	1.7	25
89	Multitasking: Dual Leucine Zipper–Bearing Kinases in Neuronal Development and Stress Management. Annual Review of Cell and Developmental Biology, 2019, 35, 501-521.	4.0	25
90	Release-dependent feedback inhibition by a presynaptically localized ligand-gated anion channel. ELife, 2016, 5, .	2.8	24

#	Article	IF	CITATIONS
91	DIP-2 suppresses ectopic neurite sprouting and axonal regeneration in mature neurons. Journal of Cell Biology, 2019, 218, 125-133.	2.3	23
92	Cholinergic transmission in <i>C</i> . <i>elegans</i> : Functions, diversity, and maturation of AChâ€activated ion channels. Journal of Neurochemistry, 2021, 158, 1274-1291.	2.1	23
93	Rabx-5 Regulates RAB-5 Early Endosomal Compartments and Synaptic Vesicles in C. elegans. PLoS ONE, 2012, 7, e37930.	1.1	23
94	Intermediate filament accumulation can stabilize microtubules in <i>Caenorhabditis elegans</i> motor neurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3114-3119.	3.3	22
95	SYD-1C, UNC-40 (DCC) and SAX-3 (Robo) Function Interdependently to Promote Axon Guidance by Regulating the MIG-2 GTPase. PLoS Genetics, 2015, 11, e1005185.	1.5	20
96	Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein. Cell Reports, 2017, 19, 1117-1129.	2.9	20
97	Nuclear pre-mRNA 3â€2-end processing regulates synapse and axon development in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 2237-2250.	1.2	19
98	Targeted Mutagenesis of Duplicated Genes in Caenorhabditis elegans Using CRISPR-Cas9. Journal of Genetics and Genomics, 2016, 43, 103-106.	1.7	19
99	Coupled Control of Distal Axon Integrity and Somal Responses to Axonal Damage by the Palmitoyl Acyltransferase ZDHHC17. Cell Reports, 2020, 33, 108365.	2.9	19
100	The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics. Current Biology, 2020, 30, 865-876.e7.	1.8	19
101	Regulation of neuronal axon specification by glia-neuron gap junctions in C. elegans. ELife, 2016, 5, .	2.8	19
102	Neuronal differentiation in C. elegans. Current Opinion in Cell Biology, 2005, 17, 682-689.	2.6	17
103	Systematic Analyses of <i>rpm-1</i> Suppressors Reveal Roles for ESS-2 in mRNA Splicing in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 1101-1115.	1.2	17
104	Advances in synapse formation: forging connections in the worm. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 85-97.	5.9	16
105	The C2H2 zinc-finger protein SYD-9 is a putative posttranscriptional regulator for synaptic transmission. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10450-10455.	3.3	15
106	A Ubiquitin E2 Variant Protein Acts in Axon Termination and Synaptogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2010, 186, 135-145.	1.2	15
107	A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans. Frontiers in Neuroscience, 2017, 11, 263.	1.4	15
108	Tissue-specific regulation of alternative polyadenylation represses expression of neuronal ankyrin isoform in <i>C. elegans</i> epidermal development. Development (Cambridge), 2017, 144, 698-707.	1.2	14

#	Article	IF	CITATIONS
109	Novel Mutations in Synaptic Transmission Genes Suppress Neuronal Hyperexcitation in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2055-2063.	0.8	14
110	A Critical Role for DLK and LZK in Axonal Repair in the Mammalian Spinal Cord. Journal of Neuroscience, 2022, 42, 3716-3732.	1.7	14
111	Rapid Integration of Multi-copy Transgenes Using Optogenetic Mutagenesis in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2091-2097.	0.8	12
112	Building stereotypic connectivity: mechanistic insights into structural plasticity from C. elegans. Current Opinion in Neurobiology, 2018, 48, 97-105.	2.0	12
113	Gap junctions: historical discoveries and new findings in the <i>C aenorhabditis</i> â€^ <i>elegans</i> nervous system. Biology Open, 2020, 9, .	0.6	11
114	Pharming for Genes in Neurotransmission: Combining Chemical and Genetic Approaches in <i>Caenorhabditis elegans</i> . ACS Chemical Neuroscience, 2018, 9, 1963-1974.	1.7	10
115	Shaping neurodevelopment: distinct contributions of cytoskeletal proteins. Current Opinion in Neurobiology, 2018, 51, 111-118.	2.0	10
116	<i>Caenorhabditis elegans</i> junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. Genetics, 2021, 218, .	1.2	9
117	Junctophilins: Key Membrane Tethers in Muscles and Neurons. Frontiers in Molecular Neuroscience, 2021, 14, 709390.	1.4	9
118	Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1006844.	1.5	8
119	Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans. PLoS ONE, 2020, 15, e0233991.	1.1	8
120	Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. ELife, 2021, 10, .	2.8	8
121	Eukaryotic initiation factor EIF-3.G augments mRNA translation efficiency to regulate neuronal activity. ELife, 2021, 10, .	2.8	8
122	Unraveling the mechanisms of synapse formation and axon regeneration: the awesome power of C. elegans genetics. Science China Life Sciences, 2015, 58, 1084-1088.	2.3	7
123	Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes and Development, 2015, 29, 2377-2390.	2.7	7
124	The Function of a Spindle Checkpoint Gene bub-1 in C. elegans Development. PLoS ONE, 2009, 4, e5912.	1.1	6
125	Functional Dissection of C. elegans bZip-Protein CEBP-1 Reveals Novel Structural Motifs Required for Axon Regeneration and Nuclear Import. Frontiers in Cellular Neuroscience, 2019, 13, 348.	1.8	6
126	Nerve regeneration in C. elegans after femtosecond laser axotomy. , 2005, , .		6

Nerve regeneration in C. elegans after femtosecond laser axotomy. , 2005, , .

#	Article	IF	CITATIONS
127	Regulatory roles of RNA binding proteins in the nervous system of C. elegans. Frontiers in Molecular Neuroscience, 2014, 7, 100.	1.4	5
128	Wired for insight—recent advances in Caenorhabditis elegans neural circuits. Current Opinion in Neurobiology, 2021, 69, 159-169.	2.0	5
129	Expanding views of presynaptic terminals: new findings from Caenorhabditis elegans. Current Opinion in Neurobiology, 2012, 22, 431-437.	2.0	4
130	Optogenetic Random Mutagenesis Using Histone-miniSOG in C. elegans . Journal of Visualized Experiments, 2016, , .	0.2	4
131	C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. Journal of Neurogenetics, 2020, 34, 298-306.	0.6	4
132	EOR-1 and EOR-2 function in RMED/V neuron specification. MicroPublication Biology, 2019, 2019, .	0.1	4
133	New mutants defective in RMED/V neuron specification are alleles of EOR-1 and EOR-2. MicroPublication Biology, 2019, 2019, .	0.1	4
134	Structures of PHR Domains from Mus musculus Phr1 (Mycbp2) Explain the Loss-of-Function Mutation (Gly1092 → Glu) of the C. elegans Ortholog RPM-1. Journal of Molecular Biology, 2010, 397, 883-892.	2.0	3
135	Spatial and temporal dynamics of neurite regrowth. Current Opinion in Neurobiology, 2013, 23, 1011-1017.	2.0	3
136	Altered Function of the DnaJ Family Cochaperone DNJ-17 Modulates Locomotor Circuit Activity in a <i>Caenorhabditis elegans</i> Seizure Model. G3: Genes, Genomes, Genetics, 2016, 6, 2165-2171.	0.8	3
137	Distinct cis elements in the 3′ UTR of the C. elegans cebp-1 mRNA mediate its regulation in neuronal development. Developmental Biology, 2017, 429, 240-248.	0.9	3
138	Isolation and characterization of a novel member of the ACC ligand-gated chloride channel family, Hco-LCG-46, from the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology, 2020, 237, 111276.	0.5	3
139	Nematode C. elegans: Genetic Dissection of Pathways Regulating Seizure and Epileptic-Like Behaviors. , 2017, , 327-344.		2
140	The muscarinic agonist arecoline suppresses motor circuit hyperactivity in. MicroPublication Biology, 2020, .	0.1	2
141	Molecular and Genetic Approaches for the Analysis of C. elegans Neuronal Development. Methods in Cell Biology, 2011, 106, 413-443.	0.5	1
142	Ground Control to Major Tom: The Cell Body Signals Axon Degeneration. Cell, 2016, 164, 842-844.	13.5	1
143	Nature's gift to neuroscience. Journal of Neurogenetics, 2020, 34, 223-224.	0.6	1
144	Nerve regeneration after femtosecond laser nanosurgery. , 2005, 5714, 138.		0

#	Article	IF	CITATIONS
145	Nerve Regeneration Following Femtosecond Laser Nano-Axotomy. , 2005, , MB8.		0
146	Development of the Drosophila and C. Elegans Neuromuscular Junctions. , 2006, , 43-65.		0
147	Femtosecond Laser Ablation of Axons and the Subsequent Neural Regrowth. , 2005, , .		0
148	Liprin-α/SYD-2 determines the size of dense projections in presynaptic active zones inC. elegans. Journal of General Physiology, 2014, 143, 14310IA55.	0.9	0
149	EOR-1 and EOR-2 act independently of RAS and WNT signaling pathways in RMED/V neuron specification. MicroPublication Biology, 2019, 2019, .	0.1	0
150	Novel actions of arecoline in the motor circuit. MicroPublication Biology, 2020, 2020, .	0.1	0
151	Multiple Roles of RNA Regulatory Factors in Neuronal Development and Function in <i>C. elegans</i> ., 0, , 323-358.		Ο
152	Title is missing!. , 2020, 15, e0233991.		0
153	Title is missing!. , 2020, 15, e0233991.		0
154	Title is missing!. , 2020, 15, e0233991.		0
155	Title is missing!. , 2020, 15, e0233991.		0