Elzbieta Jastrzebska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879713/publications.pdf

Version: 2024-02-01

41 papers

824 citations

393982 19 h-index 28 g-index

42 all docs 42 docs citations

times ranked

42

1345 citing authors

#	Article	IF	CITATIONS
1	Investigation of the Therapeutic Potential of New Antidiabetic Compounds Using Islet-on-a-Chip Microfluidic Model. Biosensors, 2022, 12, 302.	2.3	3
2	Lab-on-a-chip system integrated with nanofiber mats used as a potential tool to study cardiovascular diseases (CVDs). Sensors and Actuators B: Chemical, 2021, 330, 129291.	4.0	20
3	Study of Stem Cells Influence on Cardiac Cells Cultured with a Cyanide-P-Trifluoromethoxyphenylhydrazone in Organ-on-a-Chip System. Biosensors, 2021, 11, 131.	2.3	6
4	Islet-on-a-chip: Biomimetic micropillar-based microfluidic system for three-dimensional pancreatic islet cell culture. Biosensors and Bioelectronics, 2021, 183, 113215.	5.3	14
5	Synergistic effect of the combination therapy on ovarian cancer cells under microfluidic conditions. Analytica Chimica Acta, 2020, 1100, 138-148.	2.6	16
6	Cytotoxic properties of graphene derivatives depending on origin and type of cell line. Journal of Materials Research, 2020, 35, 2385-2395.	1.2	3
7	Combinations of regenerative medicine and Lab-on-a-chip systems: New hope to restoring the proper function of pancreatic islets in diabetes. Biosensors and Bioelectronics, 2020, 167, 112451.	5.3	11
8	A multilayered cancer-on-a-chip model to analyze the effectiveness of new-generation photosensitizers. Analyst, The, 2020, 145, 6937-6947.	1.7	11
9	Simulation of hypoxia of myocardial cells in microfluidic systems. Scientific Reports, 2020, 10, 15524.	1.6	3
10	Human mesenchymal stem cell (hMSC) differentiation towards cardiac cells using a new microbioanalytical method. Analyst, The, 2020, 145, 3017-3028.	1.7	8
11	Well-defined Graphene Oxide as a Potential Component in Lung Cancer Therapy. Current Cancer Drug Targets, 2020, 20, 47-58.	0.8	5
12	<p>The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism</p> . International Journal of Nanomedicine, 2019, Volume 14, 2281-2299.	3.3	39
13	Selective cancer-killing ability of new efficient porphyrin-based nanophotosensitizer in Lab-on-a-chip system. Sensors and Actuators B: Chemical, 2019, 282, 665-674.	4.0	10
14	Lab-on-a-chip systems for photodynamic therapy investigations. Biosensors and Bioelectronics, 2018, 101, 37-51.	5.3	35
15	Heart-on-a-chip Systems. , 2018, , 169-199.		1
16	Cardiac Cell Culture Microtechnologies Based on Stem Cells. , 2018, , 201-231.		0
17	Microfluidic Systems. , 2018, , 3-21.		2
18	Microsystem with micropillar array for three- (gel-embaded) and two-dimensional cardiac cell culture. Sensors and Actuators B: Chemical, 2018, 254, 973-983.	4.0	30

#	Article	IF	Citations
19	Recent progress in the engineering of multifunctional colloidal nanoparticles for enhanced photodynamic therapy and bioimaging. Advances in Colloid and Interface Science, 2018, 261, 62-81.	7.0	59
20	Different action of nanoencapsulated meso-tetraphenylporphyrin in breast spheroid co-culture and mono-culture under microfluidic conditions. Sensors and Actuators B: Chemical, 2018, 275, 69-77.	4.0	19
21	Biological characterization of the modified poly(dimethylsiloxane) surfaces based on cell attachment and toxicity assays. Biomicrofluidics, 2018, 12, 044105.	1.2	23
22	Microfluidic Systems for Cardiac Cell Cultureâ€"Characterization. , 2018, , 155-167.		1
23	Poly(I-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Materials Science and Engineering C, 2017, 75, 305-316.	3.8	57
24	Heart-on-a-Chip: An Investigation of the Influence of Static and Perfusion Conditions on Cardiac (H9C2) Cell Proliferation, Morphology, and Alignment. SLAS Technology, 2017, 22, 536-546.	1.0	41
25	3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic Lab-on-a-Chip system. Analytica Chimica Acta, 2017, 990, 110-120.	2.6	46
26	Adhesion of MRCâ€5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis, 2016, 37, 536-544.	1.3	24
27	Advanced 3D Spheroid Culture for Evaluation of Photodynamic Therapy in Microfluidic System. Procedia Engineering, 2016, 168, 403-406.	1.2	3
28	Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. Biomicrofluidics, 2016, 10, 014116.	1.2	21
29	Evaluation of nanoencapsulated verteporfin's cytotoxicity using a microfluidic system. Journal of Pharmaceutical and Biomedical Analysis, 2016, 127, 39-48.	1.4	19
30	Heart-on-a-chip based on stem cell biology. Biosensors and Bioelectronics, 2016, 75, 67-81.	5.3	74
31	Analysis of the efficiency of photodynamic therapy using a microsystem for mono-, co- and mixed cultures. Sensors and Actuators B: Chemical, 2015, 221, 1356-1365.	4.0	14
32	Research on the use of hydrogel for the three-dimensional cell culture in microfluidic system. Proceedings of SPIE, 2014, , .	0.8	0
33	Flow-through sensor array applied to cytotoxicity assessment in cell cultures for drug-testing purposes. Biosensors and Bioelectronics, 2014, 51, 55-61.	5.3	18
34	A microfluidic system to study the cytotoxic effect of drugs: the combined effect of celecoxib and 5-fluorouracil on normal and cancer cells. Mikrochimica Acta, 2013, 180, 895-901.	2.5	25
35	"Lab-on-a-Chip―Dedicated for Cell Engineering. Springer Series in Chemical Physics, 2013, , 253-269.	0.2	2
36	Multi-function microsystem for cells migration analysis and evaluation of photodynamic therapy procedure in coculture. Biomicrofluidics, 2012, 6, 044116.	1.2	10

#	Article	IF	CITATIONS
37	Evaluation of cytotoxic effect of 5-fluorouracil on human carcinoma cells in microfluidic system. Sensors and Actuators B: Chemical, 2011, 160, 1544-1551.	4.0	23
38	A microfluidic device with fluorimetric detection for intracellular components analysis. Biomedical Microdevices, 2011, 13, 431-440.	1.4	11
39	Evaluation of photodynamic therapy (PDT) procedures using microfluidic system. Analytica Chimica Acta, 2011, 683, 149-155.	2.6	23
40	PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage. Sensors and Actuators B: Chemical, 2010, 145, 533-542.	4.0	69
41	Miniaturized tools and devices for bioanalytical applications: an overview. Analytical and Bioanalytical Chemistry, 2009, 395, 647-668.	1.9	25