Kaiyuan Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879533/publications.pdf

Version: 2024-02-01

51	2,165	331670	223800
papers	citations	h-index	g-index
53	53	53	2985
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. Electrochemical Energy Reviews, 2020, 3, 43-80.	25.5	393
2	Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials. Advanced Materials, 2015, 27, 6104-6109.	21.0	297
3	Activated Carbon-Coated Carbon Nanotubes for Energy Storage in Supercapacitors and Capacitive Water Purification. ACS Sustainable Chemistry and Engineering, 2014, 2, 1289-1298.	6.7	209
4	Efficient Lightweight Supercapacitor with Compression Stability. Advanced Functional Materials, 2016, 26, 6437-6445.	14.9	123
5	Polypyrrole nanofiber–carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant. Journal of Materials Chemistry A, 2013, 1, 11614.	10.3	97
6	Electrophoretic nanotechnology of graphene–carbon nanotube and graphene–polypyrrole nanofiber composites for electrochemical supercapacitors. Journal of Colloid and Interface Science, 2013, 407, 474-481.	9.4	72
7	Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond. Carbon, 2021, 185, 126-151.	10.3	71
8	Fabrication of Polypyrrole-Coated Carbon Nanotubes Using Oxidant–Surfactant Nanocrystals for Supercapacitor Electrodes with High Mass Loading and Enhanced Performance. ACS Applied Materials & Enhanced Performance. ACS Applied Materials & Enhanced Performance.	8.0	69
9	Influence of current collector on capacitive behavior and cycling stability of Tiron doped polypyrrole electrodes. Journal of Power Sources, 2013, 240, 42-49.	7.8	69
10	Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance. Journal of Power Sources, 2014, 268, 233-239.	7.8	68
11	Highly efficient macroporous adsorbents for toxic metal ions in water systems based on polyvinyl alcohol–formaldehyde sponges. Journal of Materials Chemistry A, 2016, 4, 2537-2549.	10.3	53
12	Size Effects in Sodium Ion Batteries. Advanced Functional Materials, 2021, 31, 2106047.	14.9	51
13	Asymmetric Supercapacitors Based on Activatedâ€Carbonâ€Coated Carbon Nanotubes. ChemElectroChem, 2015, 2, 396-403.	3.4	48
14	Anionic dopant–dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. Journal of Materials Chemistry A, 2014, 2, 14666.	10.3	40
15	Asymmetric supercapacitor, based on composite MnO2-graphene and N-doped activated carbon coated carbon nanotube electrodes. Electrochimica Acta, 2017, 233, 142-150.	5.2	39
16	Hierarchically porous carbon with heteroatom doping for the application of Zn-ion capacitors. Carbon, 2021, 185, 1-8.	10.3	35
17	Influence of chemical structure of dyes on capacitive dye removal from solutions. Electrochimica Acta, 2015, 174, 588-595.	5.2	34
18	Asymmetric supercapacitor based on MnO2 and Fe2O3 nanotube active materials and graphene current collectors. Nano Structures Nano Objects, 2018, 15, 98-106.	3.5	28

#	Article	IF	CITATIONS
19	Microstructure and fatigue properties of plasma transferred arc alloying TiC-W-Cr on gray cast iron. Surface and Coatings Technology, 2011, 206, 1211-1217.	4.8	27
20	Supercapacitor devices for energy storage and capacitive dye removal from aqueous solutions. RSC Advances, 2015, 5, 320-327.	3.6	25
21	New colloidal route for electrostatic assembly of oxide nanoparticle – carbon nanotube composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 15-22.	4.7	24
22	Scalable Fabrication of Supercapacitors by Nozzle-Free Electrospinning. ACS Applied Energy Materials, 2018, 1, 296-300.	5.1	23
23	One-step synthesis of nitrogenâ'fluorine dual-doped porous carbon for supercapacitors. Journal of Energy Storage, 2021, 38, 102509.	8.1	22
24	Electrophoretic deposition of LiFePO4 for Li-ion batteries. Materials Letters, 2019, 241, 10-13.	2.6	21
25	Azopolymer triggered electrophoretic deposition of MnO ₂ -carbon nanotube composites and polypyrrole coated carbon nanotubes for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16486-16494.	10.3	20
26	Effects of Silicone Oil Viscosity and Carbonyl Iron Particle Weight Fraction and Size on Yield Stress for Magnetorheological Grease Based on a New Preparation Technique. Materials, 2019, 12, 1778.	2.9	20
27	Surface modification and cathodic electrophoretic deposition of ceramic materials and composites using celestine blue dye. RSC Advances, 2014, 4, 29652.	3.6	18
28	Synthesis of metal and metal oxide nanoparticles, liquid–liquid extraction and application in supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500, 195-202.	4.7	17
29	A micron-size carbon-free K3V2O2(PO4)2F cathode with high-rate performance for potassium-ion batteries. Chemical Engineering Journal, 2022, 436, 135235.	12.7	12
30	Fabrication of <scp>T</scp> ironâ€doped polypyrrole/ <scp>MWCNT</scp> composite electrodes with high mass loading and enhanced performance for supercapacitors. Journal of Applied Polymer Science, 2015, 132, .	2.6	10
31	Film deposition mechanisms and properties of optically active chelating polymer and composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 17-25.	4.7	10
32	Electrodeposition of Carbon Nanotubes Triggered by Cathodic and Anodic Reactions of Dispersants. Materials and Manufacturing Processes, 2015, 30, 771-777.	4.7	10
33	Extraction of Lithium from Single-Crystalline Lithium Manganese Oxide Nanotubes Using Ammonium Peroxodisulfate. IScience, 2020, 23, 101768.	4.1	10
34	Nitrogen-Doped nano-carbon onion rings for energy storage in Lithium-ion capacitors. Journal of Energy Storage, 2020, 31, 101609.	8.1	10
35	Dual-Conductive Li alloy composite anode constructed by a synergetic Conversion-Alloying reaction with LiMgPO4. Chemical Engineering Journal, 2022, 439, 135705.	12.7	10
36	A flow-rate-controlled double-nozzles approach for electrochemical additive manufacturing. Virtual and Physical Prototyping, 2022, 17, 52-68.	10.4	9

#	Article	IF	Citations
37	Low-Temperature Synthesis of Amorphous FePO ₄ @rGO Composites for Cost-Effective Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57442-57450.	8.0	9
38	Enhanced capacitive performance of MnO 2 - multiwalled carbon nanotube electrodes, prepared using lauryl gallate dispersant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 504-511.	4.7	8
39	Characterization of Ni plaque based polypyrrole electrodes prepared by pulseelectropolymerization. Materials Letters, 2013, 96, 135-138.	2.6	7
40	Silver nanoparticle assembly on carbon nanotubes triggered by reductive surfactant coating. Materials Letters, 2016, 178, 128-131.	2.6	7
41	On microstructure and fatigue characterisation of cast iron alloyed with PTA deposits. Surface Engineering, 2012, 28, 113-121.	2.2	6
42	Surface Treatment of 45 Steels by Plasma Beam Alloying and Plasma Surface Quenching. Advanced Materials Research, 0, 129-131, 1109-1113.	0.3	5
43	Electrophoretic deposition of a memory-type flame retardant material. Materials Letters, 2015, 153, 106-109.	2.6	5
44	Spontaneously spread polymer thin films on the miscible liquid substrates. Chemical Engineering Journal, 2022, 437, 135443.	12.7	5
45	A dendrite suppression coating formulated via electrophoretic deposition using Bi-functional surfactants for Zn-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165790.	5.5	5
46	Effect of tempering treatment on microstructure and fatigue life of TiC–Cr overlay, produced by plasma transferred arc alloying. Journal of Materials Science, 2012, 47, 720-729.	3.7	4
47	The microstructural characteristics and mechanical property of Al fiber-reinforced cordierite ceramics. Materials Letters, 2018, 215, 99-101.	2.6	3
48	A Pitaya‣ike Coâ€800@KJ Nanocomposite as Separator Coating for Highâ€Performance Lithium–Sulfur Battery. Energy Technology, 2021, 9, 2001017.	3.8	3
49	Recovering the electrochemical window by forming a localized solvation nanostructure in ionic liquids with trace water. Science China Chemistry, 2022, 65, 96-105.	8.2	2
50	Editorial: Three-Dimensional Carbon Architectures for Energy Conversion and Storage. Frontiers in Energy Research, 2020, 8, .	2.3	0
51	Three-Dimensional Carbon Architectures for Energy Conversion and Storage. Frontiers Research Topics, 0, , .	0.2	0