
Keiji Nishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879514/publications.pdf Version: 2024-02-01

KEIII NISHIDA

#	Article	IF	CITATIONS
1	Modification of tomato breeding traits and plant hormone signaling by Target-AID, the genome-editing system inducing efficient nucleotide substitution. Horticulture Research, 2022, 9, .	2.9	11
2	CRISPR-derived genome editing technologies for metabolic engineering. Metabolic Engineering, 2021, 63, 141-147.	3.6	23
3	Efficient base editing in tomato using a highly expressed transient system. Plant Cell Reports, 2021, 40, 667-676.	2.8	8
4	Transversion Expansion of Base Editing. CRISPR Journal, 2021, 4, 462-463.	1.4	2
5	Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight. Scientific Reports, 2021, 11, 21534.	1.6	18
6	Multiple gene substitution by Target-AID base-editing technology in tomato. Scientific Reports, 2020, 10, 20471.	1.6	36
7	Production of Herbicide-Sensitive Strain to Prevent Volunteer Rice Infestation Using a CRISPR-Cas9 Cytidine Deaminase Fusion. Frontiers in Plant Science, 2020, 11, 925.	1.7	13
8	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	3.3	34
9	Base editors for simultaneous introduction of C-to-T and A-to-G mutations. Nature Biotechnology, 2020, 38, 865-869.	9.4	137
10	Mammalian synthetic biology by CRISPRs engineering and applications. Current Opinion in Chemical Biology, 2019, 52, 79-84.	2.8	7
11	A method using electroporation for the protein delivery of Cre recombinase into cultured Arabidopsis cells with an intact cell wall. Scientific Reports, 2019, 9, 2163.	1.6	25
12	Targeted Base Editing with CRISPR-Deaminase in Tomato. Methods in Molecular Biology, 2019, 1917, 297-307.	0.4	9
13	Pin-point base editing for next generation breeding. Japanese Journal of Pesticide Science, 2019, 44, 59-64.	0.0	0
14	Deaminase-mediated multiplex genome editing in Escherichia coli. Nature Microbiology, 2018, 3, 423-429.	5.9	161
15	Knockout of the SREBP system increases production of the polyketide FR901512 in filamentous fungal sp. No. 14919 and lovastatin in Aspergillus terreus ATCC20542. Applied Microbiology and Biotechnology, 2018, 102, 1393-1405.	1.7	16
16	Inheritance of co-edited genes by CRISPR-based targeted nucleotide substitutions in rice. Plant Physiology and Biochemistry, 2018, 131, 78-83.	2.8	31
17	Herbicide tolerance-assisted multiplex targeted nucleotide substitution in rice. Data in Brief, 2018, 20, 1325-1331.	0.5	12
18	In vivo targeted single-nucleotide editing in zebrafish. Scientific Reports, 2018, 8, 11423.	1.6	22

Keiji Nishida

#	Article	IF	CITATIONS
19	Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnology Journal, 2018, 13, e1700596.	1.8	39
20	Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology, 2017, 35, 441-443.	9.4	632
21	Development of a comprehensive set of tools for genome engineering in a cold- and thermo-tolerant Kluyveromyces marxianus yeast strain. Scientific Reports, 2017, 7, 8993.	1.6	67
22	Beyond Native Cas9: Manipulating Genomic Information and Function. Trends in Biotechnology, 2017, 35, 983-996.	4.9	64
23	Glycosyltransferase MDR1 assembles a dividing ring for mitochondrial proliferation comprising polyglucan nanofilaments. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13284-13289.	3.3	22
24	Targeted Nucleotide Substitution in Mammalian Cell by Target-AID. Bio-protocol, 2017, 7, .	0.2	2
25	Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 2016, 353, .	6.0	1,011
26	Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2015, 99, 9771-9778.	1.7	13
27	Evaluation of genes involved in oxidative phosphorylation in yeast by developing a simple and rapid method to measure mitochondrial ATP synthetic activity. Microbial Cell Factories, 2015, 14, 56.	1.9	5
28	Golgi inheritance in the primitive red alga, Cyanidioschyzon merolae. Protoplasma, 2013, 250, 943-948.	1.0	19
29	Single-membrane–bounded peroxisome division revealed by isolation of dynamin-based machinery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9583-9588.	3.3	39
30	Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway. PLoS Biology, 2012, 10, e1001269.	2.6	48
31	Mitotic inheritance of endoplasmic reticulum in the primitive red alga Cyanidioschyzon merolae. Protoplasma, 2012, 249, 1129-1135.	1.0	25
32	Involvement of Elongation Factor-1α in Cytokinesis without Actomyosin Contractile Ring in the Primitive Red Alga <i>Cyanidioschyzon merolae</i> . Cytologia, 2011, 76, 431-437.	0.2	6
33	The Vacuole Binding to Mitochondria by VIG1 Contributes an Equal Inheritance of the Vacuoles in Cyanidioschyzon merolae. Cytologia, 2010, 75, 189-194.	0.2	1
34	The Coiled-Coil Protein VIG1 Is Essential for Tethering Vacuoles to Mitochondria during Vacuole Inheritance of Cyanidioschyzon merolae Â. Plant Cell, 2010, 22, 772-781.	3.1	35
35	Periodic Gene Expression Patterns during the Highly Synchronized Cell Nucleus and Organelle Division Cycles in the Unicellular Red Alga Cyanidioschyzon merolae. DNA Research, 2009, 16, 59-72.	1.5	68
36	Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance. Plant Cell Reports, 2009, 28, 1881-1893.	2.8	22

Keiji Nishida

#	Article	IF	CITATIONS
37	Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga <i>Cyanidioschyzon merolae</i> . Plant Journal, 2009, 60, 882-893.	2.8	75
38	Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. Journal of Plant Research, 2008, 121, 3-17.	1.2	33
39	Novel Dynamics of FtsZ Ring Before Plastid Abscission. Cytologia, 2008, 73, 197-201.	0.2	5
40	WD40 protein Mda1 is purified with Dnm1 and forms a dividing ring for mitochondria before Dnm1 in Cyanidioschyzon merolae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4736-4741.	3.3	39
41	Identification and mitotic partitioning strategies of vacuoles in the unicellular red alga Cyanidioschyzon merolae. Planta, 2007, 226, 1017-1029.	1.6	35
42	Isolated Chloroplast Division Machinery Can Actively Constrict After Stretching. Science, 2006, 313, 1435-1438.	6.0	98
43	Identification of Lysosome-like Structures in a Unicellular Red Alga Cyanidioschyzon merolae. Cytologia, 2005, 70, 351-354.	0.2	2
44	Cyanidioschyzon merolae Genome. A Tool for Facilitating Comparable Studies on Organelle Biogenesis in Photosynthetic Eukaryotes. Plant Physiology, 2005, 137, 567-585.	2.3	93
45	Cell cycle regulated organelles division in aprimitive red algae. Plant Morphology, 2005, 17, 51-55.	0.1	0
46	Triple Immunofluorescent Labeling of FtsZ, Dynamin, and EF-Tu Reveals a Loose Association Between the Inner and Outer Membrane Mitochondrial Division Machinery in the Red AlgaCyanidioschyzon merolae. Journal of Histochemistry and Cytochemistry, 2004, 52, 843-849.	1.3	38
47	Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, 2004, 428, 653-657.	13.7	1,016
48	Two Types of FtsZ Proteins in Mitochondria and Red-Lineage Chloroplasts: The Duplication of FtsZ Is Implicated in Endosymbiosis. Journal of Molecular Evolution, 2004, 58, 291-303.	0.8	88
49	Isolation of Cycloheximide-resistant Mutants of Cyanidioschyzon merolae. Cytologia, 2004, 69, 97-100.	0.2	9
50	An evolutionary puzzle: chloroplast and mitochondrial division rings. Trends in Plant Science, 2003, 8, 432-438.	4.3	73
51	A Plant-Specific Dynamin-Related Protein Forms a Ring at the Chloroplast Division Site. Plant Cell, 2003, 15, 655-665.	3.1	204
52	Dynamic recruitment of dynamin for final mitochondrial severance in a primitive red alga. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2146-2151.	3.3	151
53	Phenotypic Characterization of High Carotenoid Tomato Mutants Generated by the Target-AlD Base-Editing Technology. Frontiers in Plant Science, 0, 13, .	1.7	4