Joel D Eaves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879354/publications.pdf

Version: 2024-02-01

777949 685536 25 753 13 24 h-index citations g-index papers 25 25 25 1306 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Triplet-pair spin signatures from macroscopically aligned heteroacenes in an oriented single crystal. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
2	Multidimensional Nano-Imaging of Structure, Coupling, and Disorder in Molecular Materials. Nano Letters, 2021, 21, 6463-6470.	4.5	5
3	Clock transitions guard against spin decoherence in singlet fission. Journal of Chemical Physics, 2021, 155, 194109.	1.2	5
4	The Motion of Trapped Holes on Nanocrystal Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 9876-9885.	2.1	4
5	Singlet fission for quantum information and quantum computing: the parallel JDE model. Scientific Reports, 2020, 10, 18480.	1.6	42
6	Surface-Trapped Hole Diffusion in CdS and CdSe: The Superexchange Mechanism. Journal of Physical Chemistry C, 2020, 124, 28244-28251.	1.5	2
7	Temperature-Dependent Transient Absorption Spectroscopy Elucidates Trapped-Hole Dynamics in CdS and CdSe Nanorods. Journal of Physical Chemistry Letters, 2019, 10, 2782-2787.	2.1	19
8	Quantum Efficiency of Charge Transfer Competing against Nonexponential Processes: The Case of Electron Transfer from CdS Nanorods to Hydrogenase. Journal of Physical Chemistry C, 2019, 123, 886-896.	1.5	24
9	Nanocrystalline Iron Monosulfides Near Stoichiometry. Scientific Reports, 2018, 8, 6591.	1.6	11
10	On the Nature of Trapped-Hole States in CdS Nanocrystals and the Mechanism of Their Diffusion. Journal of Physical Chemistry Letters, 2018, 9, 3532-3537.	2.1	24
11	Trapped-Hole Diffusion in Photoexcited CdSe Nanorods. Journal of Physical Chemistry C, 2018, 122, 16974-16982.	1.5	16
12	Linear Response Theory for Water Transport Through Dry Nanopores. Journal of Physical Chemistry A, 2017, 121, 5377-5382.	1.1	0
13	The Dynamics of Water in Porous Two-Dimensional Crystals. Journal of Physical Chemistry B, 2017, 121, 189-207.	1.2	12
14	Observation of trapped-hole diffusion on the surfaces of CdS nanorods. Nature Chemistry, 2016, 8, 1061-1066.	6.6	108
15	Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene. Journal of Physical Chemistry Letters, 2016, 7, 1907-1912.	2.1	25
16	Tetracene Aggregation on Polar and Nonpolar Surfaces: Implications for Singlet Fission. Journal of Physical Chemistry Letters, 2015, 6, 1209-1215.	2.1	11
17	DNA Motion Capture Reveals the Mechanical Properties of DNA at the Mesoscale. Biophysical Journal, 2015, 108, 2532-2540.	0.2	18
18	Nanoscale Probing of Dynamics in Local Molecular Environments. Journal of Physical Chemistry Letters, 2015, 6, 4616-4621.	2.1	22

#	Article	IF	CITATIONS
19	Competition between electron transfer, trapping, and recombination in CdS nanorod–hydrogenase complexes. Physical Chemistry Chemical Physics, 2015, 17, 5538-5542.	1.3	45
20	Collective aspects of singlet fission in molecular crystals. Journal of Chemical Physics, 2015, 143, 044118.	1.2	36
21	Flocking with minimal cooperativity: The panic model. Physical Review E, 2014, 89, 012718.	0.8	9
22	Reentrance in an active glass mixture. Soft Matter, 2014, 10, 7495-7501.	1.2	9
23	The Tunable Hydrophobic Effect on Electrically Doped Graphene. Journal of Physical Chemistry B, 2014, 118, 530-536.	1.2	46
24	Carrier Transport in Heterojunction Nanocrystals Under Strain. Journal of Physical Chemistry Letters, 2012, 3, 791-795.	2.1	8
25	Theory of coherent resonance energy transfer. Journal of Chemical Physics, 2008, 129, 101104.	1.2	238