
Paul S Cooke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6879004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nonclassical androgen and estrogen signaling is essential for normal spermatogenesis. Seminars in Cell and Developmental Biology, 2022, 121, 71-81.	2.3	18
2	Regulation of AKT Signaling in Mouse Uterus. Endocrinology, 2022, 163, .	1.4	6
3	Role of nuclear and membrane estrogen signaling pathways in the male and female reproductive tract. Differentiation, 2021, 118, 24-33.	1.0	13
4	Spatial transcriptomics analysis of uterine gene expression in enhancer of zeste homolog 2 conditional knockout miceâ€. Biology of Reproduction, 2021, 105, 1126-1139.	1.2	10
5	Multiple Lesions Contribute to Infertility in Males Lacking Autoimmune Regulator. American Journal of Pathology, 2021, 191, 1592-1609.	1.9	7
6	Mice lacking uterine enhancer of zeste homolog 2 have transcriptomic changes associated with uterine epithelial proliferation. Physiological Genomics, 2020, 52, 81-95.	1.0	9
7	The Roles of the Histone Protein Modifier EZH2 in the Uterus and Placenta. Epigenomes, 2020, 4, 20.	0.8	6
8	Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposureâ€. Biology of Reproduction, 2019, 101, 392-404.	1.2	11
9	The histone methyltransferase EZH2 is required for normal uterine development and function in miceâ€. Biology of Reproduction, 2019, 101, 306-317.	1.2	27
10	Endocrine disruption through membrane estrogen receptors and novel pathways leading to rapid toxicological and epigenetic effects. Journal of Steroid Biochemistry and Molecular Biology, 2019, 187, 106-117.	1.2	45
11	Tissue interactions and estrogenic response during human female fetal reproductive tract development. Differentiation, 2018, 101, 39-45.	1.0	8
12	Estrogen in the male: a historical perspectiveâ€. Biology of Reproduction, 2018, 99, 27-44.	1.2	88
13	Cell Biology of the Uterus. , 2018, , 298-304.		0
14	Estrogens in Male Physiology. Physiological Reviews, 2017, 97, 995-1043.	13.1	320
15	Membrane-Localized Estrogen Receptor 1 Is Required for Normal Male Reproductive Development and Function in Mice. Endocrinology, 2016, 157, 2909-2919.	1.4	57
16	Another piece of the meiosis puzzle. Asian Journal of Andrology, 2016, 19, 3-4.	0.8	0
17	Plasticity of spermatogonial stem cells. Asian Journal of Andrology, 2015, 17, 355.	0.8	8
18	Neonatal Uterine and Vaginal Cell Proliferation and Adenogenesis Are Independent of Estrogen Receptor 1 (ESR1) in the Mouse1. Biology of Reproduction, 2015, 92, 78.	1.2	33

PAUL S COOKE

#	Article	IF	CITATIONS
19	Maximal Dexamethasone Inhibition of Luminal Epithelial Proliferation Involves Progesterone Receptor (PR)- and Non-PR-Mediated Mechanisms in Neonatal Mouse Uterus1. Biology of Reproduction, 2015, 92, 122.	1.2	7
20	Deficiency of CDKN1A or Both CDKN1A and CDKN1B Affects the Pubertal Development of Mouse Leydig Cells1. Biology of Reproduction, 2015, 92, 77.	1.2	11
21	How to make a human germ cell. Asian Journal of Andrology, 2015, 17, 441.	0.8	5
22	Uterine glands: development, function and experimental model systems. Molecular Human Reproduction, 2013, 19, 547-558.	1.3	155
23	Therapeutic effects of progesterone and its metabolites in traumatic brain injury may involve non-classical signaling mechanisms. Frontiers in Neuroscience, 2013, 7, 108.	1.4	36
24	Brief Exposure to Progesterone During a Critical Neonatal Window Prevents Uterine Gland Formation in Mice1. Biology of Reproduction, 2012, 86, 63.	1.2	78
25	The Antiproliferative Action of Progesterone in Uterine Epithelium Is Mediated by Hand2. Science, 2011, 331, 912-916.	6.0	331
26	Proliferation of Adult Sertoli Cells Following Conditional Knockout of the Gap Junctional Protein GJA1 (Connexin 43) in Mice1. Biology of Reproduction, 2007, 76, 804-812.	1.2	200
27	Estrogenicity of the Isoflavone Metabolite Equol on Reproductive and Non-Reproductive Organs in Mice1. Biology of Reproduction, 2004, 71, 966-972.	1.2	62
28	Role of Systemic and Local IGF-I in the Effects of Estrogen on Growth and Epithelial Proliferation of Mouse Uterus. Endocrinology, 2002, 143, 2673-2679.	1.4	86
29	Epithelial–Stromal Tissue Interaction in Paramesonephric (Müllerian) Epithelial Differentiation. Developmental Biology, 2001, 240, 194-211.	0.9	162
30	Regulation of Progesterone Receptors and Decidualization in Uterine Stroma of the Estrogen Receptor-α Knockout Mouse1. Biology of Reproduction, 2001, 64, 272-283.	1.2	98
31	Normal Development of Thymus in Male and Female Mice Requires Estrogen/Estrogen Receptor-α Signaling Pathway. Endocrine, 2000, 12, 207-213.	2.2	61
32	Estrogen Receptor Expression in Developing Epididymis, Efferent Ductules, and Other Male Reproductive Organs*. Endocrinology, 1991, 128, 2874-2879.	1.4	171
33	Androgen Receptor Expression in Developing Male Reproductive Organs*. Endocrinology, 1991, 128, 2867-2873.	1.4	215
34	The Endocrinology and Developmental Biology of the Prostate*. Endocrine Reviews, 1987, 8, 338-362.	8.9	946
35	Stromal-epithelial interactions in adult organs. Cell Differentiation, 1985, 17, 137-148.	1.3	300