
Lidia Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Steering Hydrocarbon Selectivity in CO ₂ Electroreduction over Soft-Landed CuO _{<i>x</i>} Nanoparticle-Functionalized Gas Diffusion Electrodes. ACS Applied Materials & Interfaces, 2022, 14, 2691-2702.	8.0	9
2	Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. Nanomaterials, 2022, 12, 779.	4.1	10
3	Green synthesis of starch-capped Cu ₂ O nanocubes and their application in the direct electrochemical detection of glucose. RSC Advances, 2021, 11, 13711-13721.	3.6	10
4	Aloe Vera-Mediated Te Nanostructures: Highly Potent Antibacterial Agents and Moderated Anticancer Effects. Nanomaterials, 2021, 11, 514.	4.1	16
5	Photoâ€Induced Selfâ€Cleaning and Wettability in TiO ₂ Nanocolumn Arrays Obtained by Glancingâ€Angle Deposition with Sputtering. Advanced Sustainable Systems, 2021, 5, 2100071.	5.3	11
6	Silicon and Hydrogen Chemistry under Laboratory Conditions Mimicking the Atmosphere of Evolved Stars. Astrophysical Journal, 2021, 906, 44.	4.5	10
7	Photoinduced Charge Transfer and Trapping on Single Gold Metal Nanoparticles on TiO ₂ . ACS Applied Materials & Interfaces, 2021, 13, 50531-50538.	8.0	12
8	Metal-catalyst-free gas-phase synthesis of long-chain hydrocarbons. Nature Communications, 2021, 12, 5937.	12.8	7
9	Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nature Astronomy, 2020, 4, 97-105.	10.1	48
10	Core–Satellite Gold Nanoparticle Complexes Grown by Inert Gas-Phase Condensation. Journal of Physical Chemistry C, 2020, 124, 24441-24450.	3.1	8
11	Electrocatalytic Behavior of PtCu Clusters Produced by Nanoparticle Beam Deposition. Journal of Physical Chemistry C, 2020, 124, 23683-23689.	3.1	9
12	Spontaneous Formation of Core@shell Co@Cr Nanoparticles by Gas Phase Synthesis. Applied Nano, 2020, 1, 87-101.	2.0	4
13	The Chemistry of Cosmic Dust Analogs from C, C ₂ , and C ₂ H ₂ in C-rich Circumstellar Envelopes. Astrophysical Journal, 2020, 895, 97.	4.5	30
14	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	4.4	333
15	Raman amplification in the ultra-small limit of Ag nanoparticles on SiO2 and graphene: Size and inter-particle distance effects. Materials and Design, 2020, 192, 108702.	7.0	22
16	Facile synthesis of an aminopropylsilane layer on Si/SiO2 substrates using ethanol as APTES solvent. MethodsX, 2020, 7, 100931.	1.6	24
17	INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry. Review of Scientific Instruments, 2020, 91, 124101.	1.3	2
18	Broad-band high-resolution rotational spectroscopy for laboratory astrophysics. Astronomy and Astrophysics, 2019, 626, A34.	5.1	15

LIDIA MARTINEZ

#	Article	IF	CITATIONS
19	Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chemistry, 2019, 21, 1982-1998.	9.0	60
20	Versatile Graphene-Based Platform for Robust Nanobiohybrid Interfaces. ACS Omega, 2019, 4, 3287-3297.	3.5	9
21	Tuning the size, composition and structure of Au and Co ₅₀ Au ₅₀ nanoparticles by high-power impulse magnetron sputtering in gas-phase synthesis. Nanotechnology, 2019, 30, 065606.	2.6	11
22	Synergic antibacterial coatings combining titanium nanocolumns and tellurium nanorods. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 36-46.	3.3	17
23	Using radio astronomical receivers for molecular spectroscopic characterization in astrochemical laboratory simulations: A proof of concept. Astronomy and Astrophysics, 2018, 609, A15.	5.1	12
24	Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Scientific Reports, 2018, 8, 7250.	3.3	27
25	Gas-phase synthesis of nanoparticles: present status and perspectives. MRS Communications, 2018, 8, 947-954.	1.8	29
26	Direct synthesis of graphene on silicon oxide by low temperature plasma enhanced chemical vapor deposition. Nanoscale, 2018, 10, 12779-12787.	5.6	26
27	Core@shell, Au@TiO _x nanoparticles by gas phase synthesis. Nanoscale, 2017, 9, 6463-6470.	5.6	29
28	Orientation symmetry breaking in self-assembled Ce _{1â^x} Gd _x O _{2â^y} nanowires derived from chemical solutions. RSC Advances, 2016, 6, 97226-97236.	3.6	8
29	Dispersion and Functionalization of Nanoparticles Synthesized by Gas Aggregation Source: Opening New Routes Toward the Fabrication of Nanoparticles for Biomedicine. Langmuir, 2015, 31, 13813-13820.	3.5	12
30	Growth and characterization of FeB nanoparticles for potential application as magnetic resonance imaging contrast agent. Materials Research Express, 2014, 1, 025008.	1.6	9
31	The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale, 2014, 6, 13483-13486.	5.6	101
32	Multiple Ion Cluster Source for the Generation of Magnetic Nanoparticles: Investigation of the Efficiency as a Function of the Working Parameters for the Case of Cobalt. Dataset Papers in Science, 2014, 2014, 1-9.	1.0	4
33	Matrix and interaction effects on the magnetic properties of Co nanoparticles embedded in gold and vanadium. Physical Chemistry Chemical Physics, 2013, 15, 316-329.	2.8	27
34	Thermal Diffusion at Nanoscale: From CoAu Alloy Nanoparticles to Co@Au Core/Shell Structures. Journal of Physical Chemistry C, 2013, 117, 3101-3108.	3.1	35
35	Investigation of the Working Parameters of a Single Magnetron of a Multiple Ion Cluster Source: Determination of the Relative Influence of the Parameters on the Size and Density of Nanoparticles. Dataset Papers in Science, 2013, 2013, 1-8.	1.0	5
36	Generation of Nanoparticles with Adjustable Size and Controlled Stoichiometry: Recent Advances. Langmuir, 2012, 28, 11241-11249.	3.5	79

LIDIA MARTINEZ

#	Article	IF	CITATIONS
37	Orientation and shape selection of self-assembled epitaxial Ce1â^'xGdxO2â^'y nanostructures grown by chemical solution deposition. CrystEngComm, 2011, 13, 6719.	2.6	25
38	Optical and magneto-optical properties of Co–SiOx thin films. Journal of Nanoparticle Research, 2011, 13, 2653-2659.	1.9	6
39	Morphological, structural, and magnetic properties of Co nanoparticles in a silicon oxide matrix. Journal of Nanoparticle Research, 2011, 13, 5321-5333.	1.9	23
40	Influence of thermal ageing on surface degradation of ethyleneâ€propyleneâ€diene elastomer. Journal of Applied Polymer Science, 2011, 119, 242-251.	2.6	20
41	Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Applied Surface Science, 2011, 257, 6202-6207.	6.1	82
42	Influence of friction on the surface characteristics of EPDM elastomers with different carbon black contents. Tribology International, 2011, 44, 996-1003.	5.9	23
43	Aspect-ratio and lateral-resolution enhancement in force microscopy by attaching nanoclusters generated by an ion cluster source at the end of a silicon tip. Review of Scientific Instruments, 2011, 82, 023710.	1.3	27
44	Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. European Biophysics Journal, 2010, 39, 1433-1444.	2.2	18
45	(Co, Zn)O compound obtained from ZnTe vapor deposition onÂCo/Si substrates. Applied Physics A: Materials Science and Processing, 2010, 99, 657-664.	2.3	Ο
46	Photoemission study of fluorination atmospheric pressure plasma processes on EPDM: Influence of the carrier and fluorinating gas. Applied Surface Science, 2010, 257, 832-836.	6.1	3
47	Compositional and structural medium energy ion scattering study of the temperature mediated diffusion determination at the Co/V interface in Co/V/MgO(100). Surface Science, 2010, 604, 2177-2183.	1.9	1
48	Redox Properties of Ordered Macroporous Ce–Zr Mixed Oxides. Journal of the Electrochemical Society, 2010, 157, B1499.	2.9	4
49	Influence of the linker type on the Au–S binding properties of thiol and disulfide-modified DNA self-assembly on polycrystalline gold. Physical Chemistry Chemical Physics, 2010, 12, 3301.	2.8	11
50	Growth and magnetic characterization of Co nanoparticles obtained by femtosecond pulsed laser deposition. Physical Review B, 2009, 79, .	3.2	14
51	Redox Properties of Ordered Macroporous Ce-Zr Mixed Oxides. ECS Transactions, 2009, 25, 1573-1582.	0.5	2
52	Application of diamond-like carbon coatings to elastomers frictional surfaces. Tribology International, 2009, 42, 584-590.	5.9	24
53	Asymmetric magnetization reversal process in Co nanohill arrays. Journal of Applied Physics, 2009, 106, 103906.	2.5	8
54	X-ray absorption and magnetic circular dichroism characterization of a novel ferromagnetic MnNx phase in Mn/Si3N4 multilayers. Applied Physics Letters, 2008, 93, .	3.3	12

LIDIA MARTINEZ

#	Article	IF	CITATIONS
55	Morphology and capping effects in the magnetic and magneto-optical properties of nanoparticulate Co films. Physical Review B, 2008, 77, .	3.2	10
56	Surface analysis of NBR and HNBR elastomers modified with different plasma treatments. Vacuum, 2007, 81, 1489-1492.	3.5	21
57	Corrosion studies of different ferrous alloys for rolling cylinders. Materials & Design, 2007, 28, 196-202.	5.1	1
58	Corrosion behaviour of different hot rolled steels. Corrosion Science, 2006, 48, 472-480.	6.6	22
59	Influence of N, Ar and Si ion implantation on the passive layer and corrosion behaviour of AISI 304 and 430 stainless steels. Surface and Coatings Technology, 2006, 200, 5123-5131.	4.8	28
60	Ar-implantation on AISI 304 stainless steel against pit initiation processes. Surface and Coatings Technology, 2006, 201, 1671-1678.	4.8	4
61	Sinergistic effect of ion implantation as a surface modification technique to improve localised corrosion of AISI 304 austenitic stainless steel. Surface and Coatings Technology, 2005, 195, 70-80.	4.8	6
62	The effect of nitrogen ion implantation on the corrosion behaviour of stainless steels in chloride media. Surface and Coatings Technology, 2005, 200, 1609-1615.	4.8	18
63	Nitrogen ion implantation on stainless steel: AFM study of surface modification. Applied Surface Science, 2005, 243, 409-414.	6.1	16
64	lon implantation as a surface modification technique to improve localised corrosion of different stainless steels. Surface and Coatings Technology, 2002, 155, 250-259.	4.8	21
65	Silicon ion implantation on austenitic and ferritic stainless steels against localized aqueous corrosion. Surface and Coatings Technology, 2000, 133-134, 344-350.	4.8	8