
Emilia GarcÃ-a-Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New data on the microporosity of bentonites. Engineering Geology, 2022, 296, 106439.	2.9	2
2	Review and new data on the surface properties of palygorskite: A comparative study. Applied Clay Science, 2022, 216, 106311.	2.6	26
3	HRTEM evidences of Tajo Basin mineralogical complexity: Crystal chemistry and genetic relationship. Applied Clay Science, 2022, 224, 106515.	2.6	2
4	An arid phase in the Internal Dinarides during the early to middle Miocene: Inferences from Mg-clays in the Pranjani Basin (Serbia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 562, 110145.	1.0	4
5	Crystal–chemical and diffraction analyses of Maya blue suggesting a different provenance of the palygorskite found in Aztec pigments*. Archaeometry, 2021, 63, 738-752.	0.6	0
6	On the structural formula of smectites: a review and new data on the influence of exchangeable cations. Journal of Applied Crystallography, 2021, 54, 251-262.	1.9	16
7	Field Spectroscopy Applied to the Kaolinite Polytypes Identification. Environmental Sciences Proceedings, 2021, 6, 16.	0.3	0
8	The alteration of Miraflores Basalt (Panama): Mineralogical and textural evolution. Applied Clay Science, 2021, 205, 106036.	2.6	3
9	Structure and Mechanical Properties of the Dueñas Clay Formation (Tertiary Duero Basin, Spain): An Overconsolidated Clay of Lacustrine Origin. Applied Sciences (Switzerland), 2021, 11, 12021.	1.3	1
10	Presence of oriented fibers in palygorskite powders and its influence on X-Ray diffractograms. Applied Clay Science, 2020, 195, 105724.	2.6	3
11	Spanish Bentonites: A Review and New Data on Their Geology, Mineralogy, and Crystal Chemistry. Minerals (Basel, Switzerland), 2019, 9, 696.	0.8	17
12	Comments on "Influence of thermally modified palygorskite on the viability of polycyclic aromatic hydrocarbon-degrading bacteria―by B. Biswas, B. Sarkar, and R. Naidy Applied Clay Science 134 (2016) 153–160, DOI 10.1016/j.clay.2016.07.003. Applied Clay Science, 2019, 175, 197-198.	2.6	2
13	A structure-based argument for non-classical crystal growth in natural clay minerals. Mineralogical Magazine, 2018, 82, 171-180.	0.6	12
14	Spanish palygorskites: geological setting, mineralogical, textural and crystal-chemical characterization. European Journal of Mineralogy, 2018, 30, 733-746.	0.4	11
15	Geochemistry and Biomarker Analysis of the Bentonites from Esquivias (Toledo, Spain). Minerals (Basel, Switzerland), 2018, 8, 291.	0.8	5
16	Identification and classification of mineralogical associations by VNIR-SWIR spectroscopy in the Tajo basin (Spain). International Journal of Applied Earth Observation and Geoinformation, 2018, 72, 57-65.	1.4	4
17	Sepiolite and palygorskite-underpinned regulation of mRNA expression of pro-inflammatory cytokines as determined by a murine inflammation model. Applied Clay Science, 2017, 137, 43-49.	2.6	6
18	An insight in the structure of a palygorskite from Palygorskaja: Some questions on the standard model. Applied Clay Science, 2017, 148, 39-47.	2.6	14

#	Article	IF	CITATIONS
19	Evidence of montmorillonite/Fe-rich smectite transformation in the Morrón de Mateo bentonite deposit (Spain): Implications for the clayey barrier behaviour. Applied Clay Science, 2016, 131, 59-70.	2.6	13
20	The role of sepiolite and palygorskite on the migration of leukocyte cells to an inflammation site. Applied Clay Science, 2016, 123, 315-319.	2.6	7
21	Mineralogical characterisation and surface properties of sepiolite from Polatli (Turkey). Applied Clay Science, 2016, 131, 124-130.	2.6	33
22	A micromorphological study on natural and folded sepiolite. European Journal of Mineralogy, 2015, 27, 81-90.	0.4	4
23	Influence of dolomite microcrystals on the technological properties of Santa Cruz de Mudela clays used for building ceramics. Applied Clay Science, 2014, 102, 261-267.	2.6	7
24	Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments. American Mineralogist, 2014, 99, 1653-1661.	0.9	32
25	Recycling of residual IGCC slags and their benefits as degreasers inÂceramics. Journal of Environmental Management, 2013, 129, 1-8.	3.8	20
26	Sepiolite–Palygorskite: A Continuous Polysomatic Series. Clays and Clay Minerals, 2013, 61, 461-472.	0.6	37
27	Sepiolite–palygorskite: Textural study and genetic considerations. Applied Clay Science, 2013, 86, 129-144.	2.6	98
28	Role of water on formation and structural features of Maya blue. Journal of Physics: Conference Series, 2012, 340, 012109.	0.3	13
29	Variability of the surface properties of sepiolite. Applied Clay Science, 2012, 67-68, 72-82.	2.6	120
30	Trioctahedral entities in palygorskite: Near-infrared evidence for sepiolite-palygorskite polysomatism. European Journal of Mineralogy, 2011, 23, 567-576.	0.4	25
31	Variability in sepiolite: Diffraction studies. American Mineralogist, 2011, 96, 1443-1454.	0.9	48
32	Advances in the Crystal Chemistry of Sepiolite and Palygorskite. Developments in Clay Science, 2011, , 33-65.	0.3	50
33	The Maya Blue Pigment. Developments in Clay Science, 2011, 3, 453-481.	0.3	29
34	Occurrence of Fe–Mg-rich smectites and corrensite in the Morrón de Mateo bentonite deposit (Cabo) Tj ETQq Geochemistry, 2011, 26, 1153-1168.	0 0 0 rgB1 1.4	/Overlock 1 13
35	On the Chemical Composition of Sepiolite and Palygorskite. Clays and Clay Minerals, 2010, 58, 1-20.	0.6	112
36	Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican	0.2	42

Ni-sepiolite-falcondoite in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Minerals, 2009, 44, 435-454. 36

#	Article	IF	CITATIONS
37	A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite–indigo to produce Maya blue. Journal of Materials Science, 2009, 44, 5524-5536.	1.7	87
38	THE OCCURRENCE OF PALYGORSKITE IN THE YUCATÃN PENINSULA: ETHNOâ€HISTORIC AND ARCHAEOLOGICAL CONTEXTS*. Archaeometry, 2009, 51, 214-230.	0.6	21
39	Octahedral cation distribution in palygorskite. American Mineralogist, 2009, 94, 200-203.	0.9	65
40	Crystallochemical Characterization of the Palygorskite and Sepiolite from the Allou Kagne Deposit, Senegal. Clays and Clay Minerals, 2007, 55, 606-617.	0.6	45
41	Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay Minerals, 2007, 42, 187-201.	0.2	32
42	The effect of the octahedral cations on the dimensions of the palygorskite cell. Clay Minerals, 2007, 42, 287-297.	0.2	49
43	FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Applied Clay Science, 2006, 31, 154-163.	2.6	234
44	Fault-hosted palygorskite from the Serrata de NÃjar deformation zone (Se Spain). Clays and Clay Minerals, 2006, 54, 324-332.	0.6	15
45	Clay minerals as alteration products in basaltic volcaniclastic deposits of La Palma (Canary Islands,) Tj ETQq1 1 0.7	784314 rg 1.0	BT/Overlack
46	Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain). Clays and Clay Minerals, 2004, 52, 484-494.	0.6	57