Craig P Paukert

List of Publications by Year in descending order

[^0]

Climate Change Effects on North American Inland Fish Populations and Assemblages. Fisheries, 2016, 41, 346-361.

7	Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1791-1807.	1.4	93
8	Effects of floods on fish assemblages in an intermittent prairie stream. Freshwater Biology, 2006, 51, 2072-2086.	2.4	88
9	Global synthesis of the documented and projected effects of climate change on inland fishes. Reviews in Fish Biology and Fisheries, 2017, 27, 339-361.	4.9	85
10	Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. Ecological Indicators, 2011, 11, 304-310.	6.3	83
11	Road Crossing Designs and Their Impact on Fish Assemblages of Great Plains Streams. Transactions of the American Fisheries Society, 2010, 139, 214-222.	1.4	67
12	One Hundred Pressing Questions on the Future of Global Fish Migration Science, Conservation, and Policy. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	66
13	Adapting Inland Fisheries Management to a Changing Climate. Fisheries, 2016, 41, 374-384.	0.8	55

Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of
Development of a Bioenergetics Model for Humpback Chub and Evaluation of Water Temperature
Changes in the Grand Canyon, Colorado River. Transactions of the American Fisheries Society, 2005,
$134,960-974$.

Identifying Alternate Pathways for Climate Change to Impact Inland Recreational Fishers. Fisheries, 2016, 41, 362-372.

19 | Potential impacts of climate change on growth and prey consumption of streamấdwelling smallmouth |
| :--- |
| bass in the central $\langle s c p\rangle \mathrm{U}</ \mathrm{scp}\rangle$ nited $\langle s c p\rangle \mathrm{S}</ \mathrm{scp}\rangle$ tates. Ecology of Freshwater Fish, 2014, 23, 336-346 |

Effects of Implanted Transmitter Size and Surgery on Survival, Growth, and Wound Healing of Bluegill. Transactions of the American Fisheries Society, 2001, 130, 975-980.
1.4

35
27 Seasonal and Diel Habitat Selection by Bluegills in a Shallow Natural Lake. Transactions of the American Fisheries Society, 2002, 131, 1131-1139.
29 Movement, Home Range, and Site Fidelity of Bluegills in a Great Plains Lake. North American Journal of
Fisheries Management, 2004, 24, 154-161.
1.0 26
Climate Change Simulations Predict Altered Biotic Response in a Thermally Heterogeneous StreamSystem. PLoS ONE, 2014, 9, ell1438.2.526
0.8 26
Transboundary Fisheries Science: Meeting the Challenges of Inland Fisheries Management in the 21st Transboundary Fisheries Science: Meet
31 Century. Fisheries, 2016, 41, 536-546.Common carp disrupt ecosystem structure and function through middle-out effects. Marine and$32 \quad$ Freshwater Research, 2017, 68, 718.1.326An Overview of Methods for Developing Bioenergetic and Life History Models for Rare andAn Overview of Methods for Developing Bioenergetic and Life History Models for Rare and
Endangered Species. Transactions of the American Fisheries Society, 2008, 137, 244-253.$1.4 \quad 25$Fish community structure in natural and engineered habitats in the Kansas River. River Research and1.725
Applications, 2010, 26, 797-805.Spring Movements of Paddlefish in a Prairie Reservoir System. Journal of Freshwater Ecology, 2001, 16,113-124.1.224
Distribution and growth of blue sucker in a Great Plains river, USA. Fisheries Management and
Ecology, 2007, 14, 255-262.

Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing. Journal
1.9

24 of Great Lakes Research, 2015, 41, 358-366.

Translocation of Humpback Chub into Tributary Streams of the Colorado River: Implications for
Longitudinal Differences in Habitat Complexity and Fish Assemblage Structure of a Great Plains River.
American Midland Naturalist, 2010, 163, 14-32.
Potential direct and indirect effects of climate change on a shallow natural lake fish assemblage.
Ecology of Freshwater Fish, 2016, 25, 487-499.1.416
62 Characterizing Angler Preferences for Largemouth Bass, Bluegill, and Walleye Fisheries in Wisconsin.North American Journal of Fisheries Management, 2019, 39, 676-692.

| Climate Change Effects on North American Fish and Fisheries to Inform Adaptation Strategies. | 0.8 |
| :--- | :--- | :--- |
| Fisheries, 2021, 46, 449-464. | |

64 Annual Changes in Seasonal River Water Temperatures in the Eastern and Western United States.
Water (Switzerland), 2017, 9, 90.2.7
65 Comparison of exploited and unexploited yellow perch Perca flavescens (Mitchill) populations inScale-dependent Factors Affecting North American River Otter Distribution in the Midwest. American
73 Effects of latitude, season, and temperature on Lake Sturgeon movement. North American Journal of
Fisheries Management, 2020, 41, 916 .

A flexible survey design for monitoring spatiotemporal fish richness in nonwadeable rivers:
74 optimizing efficiency by integrating gears. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77,
1.4

12 978-990.
75 Is there enough water? How bearish and bullish outlooks are linked to decision maker perspectives on
environmental flows. Journal of Environmental Management, 2021, 280, 111694.
7.8

76 Abiotic Factors Affecting Summer Distribution and Movement of Male Paddlefish, Polyodon spathula,
$0.1 \quad 11$
in a Prairie Reservoir. Southwestern Naturalist, 2000, 45, 133.

Sample Size Requirements for in Situ Vegetation and Substrate Classifications in Shallow, Natural
Nebraska Lakes. North American Journal of Fisheries Management, 2002, 22, 1329-1333.
1.0

Fish Community Responses to the Establishment of a Piscivore, Northern Pike (Esox lucius), in a
Nebraska Sandhill Lake. Journal of Freshwater Ecology, 2003, 18, 353-359.
1.2

Historical and Current Environmental Influences on an Endemic Great Plains Fish. American Midland
Naturalist, 2008, 159, 364-377.
0.4

COMPARATIVE GROWTH AND CONSUMPTION POTENTIAL OF RAINBOW TROUT AND HUMPBACK CHUB IN THE 80 COLORADO RIVER, GRAND CANYON, ARIZONA, UNDER DIFFERENT TEMPERATURE SCENARIOS. Southwestern
0.1

Naturalist, 2007, 52, 234-242.

81	Lake sturgeon seasonal movements in regulated and unregulated Missouri River tributaries. Ecohydrology, 2022, 15, e2362.	2.4	10
82	A Resistâ€Acceptâ€ $\operatorname{\text {Directdecisionâ€supporttoolforwalleye<i>Sandervitreus</i>(Mitchill)managementin}}$ Wisconsin. Fisheries Management and Ecology, 2022, 29, 378-391.	2.0	10

Identifying candidate reference reaches to assess the physical and biological integrity of wadeable
84 streams in different ecoregions and among stream sizes. Ecological Indicators, 2020, 111, 105966.
$6.3 \quad 9$
.

Fish Diversity, Endemism, Threats, and Conservation in the Jinsha River Basin (Upper Yangtze River),
85 China. North American Journal of Fisheries Management, 2021, 41, 967-984.
$1.0 \quad 9$

Accounting for dispersal and local habitat when evaluating tributary use by riverine fishes.
Ecosphere, 2021, 12, e03711.
$2.2 \quad 9$

Distribution and Movement of Juvenile Paddlefish in a Mainstem Missouri River Reservoir. Journal of
Freshwater Ecology, 2003, 18, 79-87.
1.2

8

Effects of Repeated Hoopnetting and Handling on Bonytail Chub. Journal of Freshwater Ecology, 2005,
20, 649-653.

91 Stakeholder-led science: engaging resource managers to identify science needs for long-term management of floodplain conservation lands. Ecology and Society, 2016, 21, .

Intensive Sampling Reveals Underreported Use of Great-River Tributaries by Large-River Fishes in Missouri. Southeastern Naturalist, 2018, 17, 512-520.

Geomorphic Controls on Floodplain Connectivity, Ecosystem Services, and Sensitivity to Climate
Change: An Example From the Lower Missouri River. Water Resources Research, 2022, 58, .

Bothriocephalus acheilognathi and Other Intestinal Helminths of Cyprinella lutrensis in Deep Creek,
Kansas. Journal of Parasitology, 2009, 95, 1224-1226.

Effects of visible implant elastomer mark colour on the predation of red shiners by largemouth bass.
Fisheries Management and Ecology, 2010, 17, 294-296.

Seasonal selection of habitat by Spotted Bass and Shorthead Redhorse in a regulated river in the
Midwest, USA. River Research and Applications, 2020, 36, 1087-1096.

Winter Habitat Selection and Efficacy of Telemetry to Aid Grass Carp Removal Efforts in a Large
Reservoir. North American Journal of Fisheries Management, 0, , .

The U.S. Inland Creel and Angler Survey Catalog (CreelCat): Development, Applications, and
Opportunities. Fisheries, 2021, 46, 574-583.

Fish diversity reduction and assemblage structure homogenization in lakes: A case study on
unselective fishing in China. , 2022, 1, 100055.

Reducing uncertainty in climate change responses of inland fishes: A decisionâ€path approach.
Conservation Science and Practice, 2022, 4, .

101 The Effect of Fixative an Total Length of Small-Bodied Stream Fishes. Journal of Freshwater Ecology,
2008, 23, 471-473.

102 Use of Multiple Temperature Logger Models Can Alter Conclusions. Water (Switzerland), 2020, 12, 668.
2.73

103 Lentic Green Sunfish Populations in Nebraska Sandhill Lakes. Journal of Freshwater Ecology, 2001, 16,
367-374.

Incorporating Established Conservation Networks into Freshwater Conservation Planning Results in More Workable Prioritizations. Frontiers in Environmental Science, 2020, 8, .

Co-occurring lotic crayfishes exhibit variable long-term responses to extreme-flow events and temperature. Freshwater Science, 2021, 40, 626-643.

Does where they start affect where they finish? A multimethod investigation of the role of stocking
106 location on survival and dispersal of hatcheryâ€ feared Lake Sturgeon in Missouri River tributaries. River Research and Applications, 0, , .

107 Impact of Gravel Bar Scalping on Neosho Madtom (<i>Noturus placidus<|i>) Populations from the Lower Neosho River, Kansas. Journal of Freshwater Ecology, 2008, 23, 501-511.

A reply to Iversen et al.'s comment â€œMonitoring of animal abundance by environmental DNA â€" An increasingly obscure perspectiveâ€: Biological Conservation, 2015, 192, 481-482.

[^0]: Source: https:/|exaly.com/author-pdf/6878686/publications.pdf
 Version: 2024-02-01

