
Divya S Vinjamur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Molecular Therapy, 2022, 30, 2693-2708.	8.2	11
2	ZNF410 represses fetal globin by singular control of CHD4. Nature Genetics, 2021, 53, 719-728.	21.4	35
3	Molecular analysis of the erythroid phenotype of a patient with BCL11A haploinsufficiency. Blood Advances, 2021, 5, 2339-2349.	5.2	7
4	Common variants in signaling transcription-factor-binding sites drive phenotypic variability in red blood cell traits. Nature Genetics, 2020, 52, 1333-1345.	21.4	24
5	ZNF410 Represses Fetal Globin By Devoted Control of CHD4/NuRD. Blood, 2020, 136, 1-1.	1.4	0
6	Rational targeting of a NuRD subcomplex guided by comprehensive in situ mutagenesis. Nature Genetics, 2019, 51, 1149-1159.	21.4	83
7	Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias. Cancer Cell, 2019, 35, 664-676.e7.	16.8	70
8	Growing and Genetically Manipulating Human Umbilical Cord Blood-Derived Erythroid Progenitor (HUDEP) Cell Lines. Methods in Molecular Biology, 2018, 1698, 275-284.	0.9	31
9	Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. British Journal of Haematology, 2018, 180, 630-643.	2.5	107
10	Synthetic Lethality of Wnt Pathway Activation and Asparaginase in Drug-Resistant Acute Leukemias. Blood, 2018, 132, 891-891.	1.4	0
11	Transcriptional Signaling Centers Govern Human Erythropoiesis and Harbor Genetic Variations of Red Blood Cell Traits. Blood, 2018, 132, 1277-1277.	1.4	0
12	Comprehensive Integrated Genomic Perturbations Reveal Molecular Mechanisms of Red Blood Cell Trait Associations. Blood, 2018, 132, 532-532.	1.4	0
13	Krüppel-Like Transcription Factor KLF1 Is Required for Optimal γ- and β-Globin Expression in Human Fetal Erythroblasts. PLoS ONE, 2016, 11, e0146802.	2.5	11
14	BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature, 2015, 527, 192-197.	27.8	726
15	Crispr-Cas9 Saturating Mutagenesis Reveals an Achilles Heel in the BCL11A Erythroid Enhancer for Fetal Hemoglobin Induction (by Genome Editing). Blood, 2015, 126, 638-638.	1.4	5
16	Kruppel-like transcription factors KLF1 and KLF2 have unique and coordinate roles in regulating embryonic erythroid precursor maturation. Haematologica, 2014, 99, 1565-1573.	3.5	16
17	Transcription Factors KLF1 and KLF2 Positively Regulate Embryonic and Fetal β-Globin Genes through Direct Promoter Binding. Journal of Biological Chemistry, 2011, 286, 24819-24827.	3.4	36