Jianzhu Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687818/publications.pdf Version: 2024-02-01

Імирни Гі

#	Article	IF	CITATIONS
1	A Time-Dependent Drought Index for Non-Stationary Precipitation Series. Water Resources Management, 2015, 29, 5631-5647.	1.9	63
2	Nonstationary Flood Frequency Analysis for Annual Flood Peak Series, Adopting Climate Indices and Check Dam Index as Covariates. Water Resources Management, 2015, 29, 5533-5550.	1.9	54
3	Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression. Water Resources Management, 2016, 30, 669-684.	1.9	48
4	A Non-stationary Standardized Streamflow Index for hydrological drought using climate and human-induced indices as covariates. Science of the Total Environment, 2020, 699, 134278.	3.9	46
5	Quantitatively analyze the impact of land use/land cover change on annual runoff decrease. Natural Hazards, 2014, 74, 1191-1207.	1.6	40
6	Effects of large-scale climate patterns and human activities on hydrological drought: a case study in the Luanhe River basin, China. Natural Hazards, 2015, 76, 1687-1710.	1.6	38
7	Runoff variations in the Luanhe River Basin during 1956–2002. Journal of Chinese Geography, 2007, 17, 339-350.	1.5	37
8	Evaluation of Nonstationarity in Annual Maximum Flood Series and the Associations with Large-scale Climate Patterns and Human Activities. Water Resources Management, 2015, 29, 1653-1668.	1.9	29
9	Quantifying the contribution of climate- and human-induced runoff decrease in the Luanhe river basin, China. Journal of Water and Climate Change, 2016, 7, 430-442.	1.2	24
10	Quantifying the Effects of Land Surface Change on Annual Runoff Considering Precipitation Variability by SWAT. Water Resources Management, 2016, 30, 1071-1084.	1.9	23
11	Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume Series in Both Univariate and Bivariate Domain. Water Resources Management, 2018, 32, 4239-4252.	1.9	23
12	The Effect of Nonstationarity in Rainfall on Urban Flooding Based on Coupling SWMM and MIKE21. Water Resources Management, 2020, 34, 1535-1551.	1.9	22
13	Quantifying drought and water scarcity: a case study in the Luanhe river basin. Natural Hazards, 2016, 81, 1913-1927.	1.6	21
14	Spatial and temporal characteristics of droughts in Luanhe River basin, China. Theoretical and Applied Climatology, 2018, 131, 1369-1385.	1.3	21
15	A New Method of Change Point Detection Using Variable Fuzzy Sets Under Environmental Change. Water Resources Management, 2014, 28, 5125-5138.	1.9	20
16	Effects of land use change on flood characteristics in mountainous area of Daqinghe watershed, China. Natural Hazards, 2014, 70, 593-607.	1.6	20
17	Changes in drought propagation under the regulation of reservoirs and water diversion. Theoretical and Applied Climatology, 2019, 138, 701-711.	1.3	20
18	Risk Assessment of Urban Floods Based on a SWMM-MIKE21-Coupled Model Using GF-2 Data. Remote Sensing, 2021, 13, 4381.	1.8	15

Jianzhu Li

#	Article	IF	CITATIONS
19	Incorporating the data of different watersheds to estimate the effects of land use change on flood peak and volume using multi-linear regression. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 1183-1196.	1.0	13
20	Water supply risk analysis of Panjiakou reservoir in Luanhe River basin of China and drought impacts under environmental change. Theoretical and Applied Climatology, 2019, 137, 2393-2408.	1.3	13
21	Event-based and continous floodÂmodeling in Zijinguan watershed, Northern China. Natural Hazards, 2021, 108, 733-753.	1.6	10
22	Flood scaling under nonstationarity in Daqinghe River basin, China. Natural Hazards, 2019, 98, 675-696.	1.6	8
23	Effects of land use changes on the ecological operation of the Panjiakou-Daheiting Reservoir system, China. Ecological Engineering, 2020, 152, 105851.	1.6	8
24	Drought forecasting in Luanhe River basin involving climatic indices. Theoretical and Applied Climatology, 2017, 130, 1133-1148.	1.3	6
25	Drought class transition analysis through different models: a case study in North China. Water Science and Technology: Water Supply, 2017, 17, 138-150.	1.0	5
26	Effects of AO and Pacific SSTA on severe droughts in Luanhe River basin, China. Natural Hazards, 2017, 88, 1251-1267.	1.6	5
27	Changes in flood characteristics and the flood driving mechanism in the mountainous Haihe River Basin, China. Hydrological Sciences Journal, 2019, 64, 1997-2005.	1.2	5
28	Drought severity classification based on threshold level method and drought effects on NPP. Theoretical and Applied Climatology, 2020, 142, 675-686.	1.3	5
29	How to update design floods after the construction of small reservoirs and check dams: A case study from the Daqinghe river basin, China. Journal of Earth System Science, 2016, 125, 795-808.	0.6	4
30	Water Supply Risk Analysis Based on Runoff Sequence Simulation with Change Point under Changing Environment. Advances in Meteorology, 2019, 2019, 1-16.	0.6	2
31	Exploring the Application of Flood Scaling Property in Hydrological Model Calibration. Journal of Hydrometeorology, 2021, 22, 3255-3274.	0.7	2