Eric H Raabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878121/publications.pdf

Version: 2024-02-01

186265 168389 3,089 97 28 53 citations h-index g-index papers 100 100 100 5336 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways. Cancers, 2022, 14, 1311.	3.7	10
2	Dual mTORC1/2 inhibition compromises cell defenses against exogenous stress potentiating Obatoclax-induced cytotoxicity in atypical teratoid/rhabdoid tumors. Cell Death and Disease, 2022, 13, 410.	6.3	4
3	DIPG-62. Reducing the levels of genomic 5-hydroxymethylcytosine by inhibiting the TET pathway induces apoptosis and decreases proliferation in Diffuse Intrinsic Pontine Glioma (DIPG). Neuro-Oncology, 2022, 24, i33-i33.	1.2	O
4	DIPG-52. Activators of the integrated stress response synergize to kill DIPG. Neuro-Oncology, 2022, 24, i30-i30.	1.2	О
5	MODL-17. The Childhood Brain Cancer Cell Line Atlas: A Resource for Biomarker Identification and Therapeutic Development. Neuro-Oncology, 2022, 24, i172-i172.	1.2	O
6	DIPG-49. International preclinical drug discovery and biomarker program informing an adoptive combinatorial trial for DMG. Neuro-Oncology, 2022, 24, i29-i30.	1.2	0
7	MEDB-02. The identification and functional characterization of circular RNA Circ_63706 in sonic hedgehog medulloblastomas. Neuro-Oncology, 2022, 24, i103-i103.	1.2	O
8	Abstract 3987: Brain penetrant HDAC and PI3K/mTOR inhibitors synergize to induce DIPG cell death. Cancer Research, 2022, 82, 3987-3987.	0.9	0
9	FSMP-18. COMPREHENSIVE METABOLIC PROFILING OF HIGH MYC MEDULLOBLASTOMA REVEALS KEY DIFFERENCES BETWEEN IN VITRO AND IN VIVO GLUCOSE AND GLUTAMINE USAGE. Neuro-Oncology Advances, 2021, 3, i19-i19.	0.7	O
10	Novel Glutamine Antagonist JHU395 Suppresses MYC-Driven Medulloblastoma Growth and Induces Apoptosis. Journal of Neuropathology and Experimental Neurology, 2021, 80, 336-344.	1.7	16
11	TORC1/2 kinase inhibition depletes glutathione and synergizes with carboplatin to suppress the growth of MYC-driven medulloblastoma. Cancer Letters, 2021, 504, 137-145.	7.2	5
12	BCOR Internal Tandem Duplication Expression in Neural Stem Cells Promotes Growth, Invasion, and Expression of PRC2 Targets. International Journal of Molecular Sciences, 2021, 22, 3913.	4.1	0
13	HGG-30. BRAIN PENETRANT HDAC INHIBITOR RG2833 SYNERGIZES WITH LOMUSTINE AND RADIATION TO INDUCE DIPG CELL DEATH. Neuro-Oncology, 2021, 23, i23-i23.	1.2	O
14	Abstract 324: Unbiased proteomic and phosphoproteomic analysis identifies response signatures and novel susceptibilities after combined MEK and mTOR inhibition in BRAFV600Emutant glioma., 2021,,.		0
15	OTME-9. Comprehensive Metabolic Profiling Of high MYC Medulloblastoma Reveals Key Differences Between In Vitro And In Vivo Glucose And Glutamine Usage. Neuro-Oncology Advances, 2021, 3, ii15-ii15.	0.7	1
16	Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and mTOR Inhibition in BRAFV600E Mutant Glioma. Molecular and Cellular Proteomics, 2021, 20, 100123.	3.8	5
17	The long noncoding RNA <i>lnc-HLX-2-7</i> is oncogenic in Group 3 medulloblastomas. Neuro-Oncology, 2021, 23, 572-585.	1.2	23
18	Conditional reprogramming culture conditions facilitate growth of lower-grade glioma models. Neuro-Oncology, 2021, 23, 770-782.	1,2	18

#	Article	IF	CITATIONS
19	Treatment of Hepatoblastoma With Drug-eluting Bead Transarterial Chemoembolization in a 13-Month-Old Infant: A Case Report and Review of the Literature. Journal of Pediatric Hematology/Oncology, 2021, 43, e123-e126.	0.6	4
20	Delta-24-RGD, an Oncolytic Adenovirus, Increases Survival and Promotes Proinflammatory Immune Landscape Remodeling in Models of AT/RT and CNS-PNET. Clinical Cancer Research, 2021, 27, 1807-1820.	7.0	12
21	EXTH-15. MULTI-FACETED INHIBITION OF TET PATHWAY WITH CELL-PERMEABLE 2HG AND BOBCAT 339 REDUCES PROLIFERATION AND INDUCES APOPTOSIS IN DIPG. Neuro-Oncology, 2021, 23, vi166-vi166.	1.2	1
22	CSIG-32. microRNA 211, A POTENTIAL THERAPEUTIC AGENT FOR GROUP 3 MEDULLOBLASTOMA IN CHILDREN. Neuro-Oncology, 2021, 23, vi40-vi40.	1.2	1
23	Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro-Oncology, 2020, 22, 563-574.	1.2	24
24	PD-L1 Expression in Pediatric Low-Grade Gliomas Is Independent of BRAF V600E Mutational Status. Journal of Neuropathology and Experimental Neurology, 2020, 79, 74-85.	1.7	10
25	Psychosis Remitted After Ependymoma Resection in a School-Aged Child. Journal of Neuropsychiatry and Clinical Neurosciences, 2020, 32, 305-308.	1.8	O
26	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	28.9	177
27	ETMR-22. TITLE: DEFINING THE CLINICAL AND PROGNOSTIC LANDSCAPE OF EMBRYONAL TUMORS WITH MULTI-LAYERED ROSETTES (ETMRs), A RARE BRAIN TUMOR REGISTRY (RBTC) STUDY. Neuro-Oncology, 2020, 22, iii327-iii328.	1.2	O
28	MEK Inhibition Suppresses Growth of Atypical Teratoid/Rhabdoid Tumors. Journal of Neuropathology and Experimental Neurology, 2020, 79, 746-753.	1.7	4
29	Combined Therapy of AXL and HDAC Inhibition Reverses Mesenchymal Transition in Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2020, 26, 3319-3332.	7.0	44
30	Response to letter to the editor: "All models are wrong; some models are useful― Neuro-Oncology, 2020, 22, 1406-1407.	1.2	0
31	Non-adhesive and highly stable biodegradable nanoparticles that provide widespread and safe transgene expression in orthotopic brain tumors. Drug Delivery and Translational Research, 2020, 10, 572-581.	5.8	7
32	DIPG-12. TARGETING EPIGENETIC MODIFIERS TO INDUCE IMMUNE SIGNALING IN DIPG. Neuro-Oncology, 2020, 22, iii289-iii289.	1.2	0
33	Orally bioavailable glutamine antagonist prodrug JHU-083 penetrates mouse brain and suppresses the growth of MYC-driven medulloblastoma. Translational Oncology, 2019, 12, 1314-1322.	3.7	46
34	Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine. Clinical Cancer Research, 2019, 25, 5925-5936.	7.0	22
35	The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nature Communications, 2019, 10, 2235.	12.8	96
36	ATRT-04. UNBIASED METABOLIC PROFILING OF ATYPICAL TERATOID/RHABDOID TUMORS PREDICTS SENSITIVITY TO GLUTAMINE METABOLIC INHIBITORS. Neuro-Oncology, 2019, 21, ii63-ii63.	1.2	0

#	Article	IF	CITATIONS
37	PDTM-18. COMBINED SUPPRESSION OF THE mTOR AND MAPK PATHWAYS INHIBITS GROWTH, DECREASES VASCULARITY AND INDUCES APOPTOSIS OR SENESCENCE IN PEDIATRIC LOW GRADE GLIOMA. Neuro-Oncology, 2019, 21, vi191-vi191.	1.2	О
38	GENE-09. LONG NONCODING RNA IncHLX2-7 A PUTATIVE MOLECULAR MARKER AND A THERAPEUTIC TARGET FOR GROUP III MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, vi99-vi99.	1.2	0
39	Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Science Translational Medicine, 2019, 11, .	12.4	129
40	The therapeutic and diagnostic potential of regulatory noncoding RNAs in medulloblastoma. Neuro-Oncology Advances, 2019, 1, vdz023.	0.7	16
41	Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and therapeutically synergizes with carboplatin. Neuro-Oncology, 2019, 21, 252-263.	1.2	21
42	Inhibition of enhancer of zest homologue 2 is a potential therapeutic target for highâ∈MYC medulloblastoma. Neuropathology, 2019, 39, 71-77.	1.2	8
43	Targeting DDX3 in Medulloblastoma Using the Small Molecule Inhibitor RK-33. Translational Oncology, 2019, 12, 96-105.	3.7	31
44	DIPG-61. HISTONE DEACETYLASE INHIBITOR PANOBINOSTAT SYNERGIZES WITH DUAL MTOR INHIBITOR TAK228 TO POTENTIATE KILLING OF DIPG CELLS. Neuro-Oncology, 2018, 20, i61-i61.	1.2	0
45	MBRS-61. IN VIVO METABOLOMICS REVEALS A POTENT COMBINATION THERAPY FOR MYC-DRIVEN MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, i141-i141.	1.2	О
46	DIPG-34. A HUMAN NEURAL STEM CELL DIPG MODEL IDENTIFIES THE RELATIVE CONTRIBUTION OF DIFFERENT ONCOGENIC ELEMENTS TO INVASIVE MALIGNANT TRANSFORMATION. Neuro-Oncology, 2018, 20, i55-i56.	1.2	1
47	ATRT-37. TARGETING ATYPICAL TERATOID/RHABDOID TUMOR USING MATURE LET-7 LEADS TO INCREASED APOPTOSIS. Neuro-Oncology, 2018, 20, i35-i36.	1.2	О
48	DIPG-75. INTERSECTION OF EPIGENETICS AND IMMUNITY IN DIPG. Neuro-Oncology, 2018, 20, i64-i64.	1.2	0
49	LGG-52. DUAL INHIBITION OF mTORC1/C2 AND MEK PATHWAY IS SYNERGISTIC IN MULTIPLE HUMAN MODELS OF PEDIATRIC LOW-GRADE GLIOMA INCLUDING A NOVEL PATIENT-DERIVED NF1 PILOCYTIC ASTROCYTOMA CELL LINE. Neuro-Oncology, 2018, 20, i115-i116.	1.2	0
50	MBRS-30. TORC1/2 INHIBITION SENSITIZES MYC-DRIVEN MEDULLOBLASTOMA CELLS TO CARBOPLATIN CHEMOTHERAPY. Neuro-Oncology, 2018, 20, i134-i135.	1.2	0
51	DIPG-62. CARBOPLATIN SYNERGIZES WITH BCL-2 INHIBITOR TO POTENTIATE KILLING OF DIPG CELLS. Neuro-Oncology, 2018, 20, i61-i61.	1.2	0
52	DIPG-05. PRECLINICAL EFFICACY OF MELK INHIBITION IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2018, 20, i49-i50.	1.2	0
53	ATRX loss induces multiple hallmarks of the alternative lengthening of telomeres (ALT) phenotype in human glioma cell lines in a cell line-specific manner. PLoS ONE, 2018, 13, e0204159.	2.5	48
54	MELK Inhibition in Diffuse Intrinsic Pontine Glioma. Clinical Cancer Research, 2018, 24, 5645-5657.	7.0	30

#	Article	IF	CITATIONS
55	DIPG-04. INHIBITION OF AXL SENSITIZES DIFFUSE INTRINSIC PONTINE GLIOMA TO CYTOTOXIC THERAPIES. Neuro-Oncology, 2018, 20, i49-i49.	1.2	0
56	Ribavirin as a potential therapeutic for atypical teratoid/rhabdoid tumors. Oncotarget, 2018, 9, 8054-8067.	1.8	15
57	PD-L1 expression in medulloblastoma: an evaluation by subgroup. Oncotarget, 2018, 9, 19177-19191.	1.8	45
58	The transcription factor Olig2 is important for the biology of diffuse intrinsic pontine gliomas. Neuro-Oncology, 2017, 19, 1068-1078.	1.2	25
59	The dual mTOR kinase inhibitor TAK228 inhibits tumorigenicity and enhances radiosensitization in diffuse intrinsic pontine glioma. Cancer Letters, 2017, 400, 110-116.	7.2	52
60	The TORC1/2 inhibitor TAK228 sensitizes atypical teratoid rhabdoid tumors to cisplatin-induced cytotoxicity. Neuro-Oncology, 2017, 19, 1361-1371.	1.2	17
61	Disrupting the CD47-SIRPÎ \pm anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	12.4	306
62	Lessons From Pediatric HIV: A Case for Curative Intent in Pediatric Cancer in LMICs. Pediatrics, 2017, 140, e20170525.	2.1	6
63	LGG-13. SYNERGISTIC TREATMENT FOR PEDIATRIC LOW GRADE GLIOMA WITH THE DUAL MTORC1/2 INHIBITOR TAK-228 AND MEK INHIBITOR TRAMETINIB. Neuro-Oncology, 2017, 19, iv35-iv36.	1.2	O
64	An immunocompetent mouse model of human glioblastoma. Oncotarget, 2017, 8, 61072-61082.	1.8	30
65	PDTB-11. DISRUPTING THE EPIGENETIC MODIFIER HMGA2 IN LETHAL PEDIATRIC AND ADULT GLIOMAS INHIBITS INVASION, GROWTH AND TUMORIGENICITY. Neuro-Oncology, 2016, 18, vi152-vi152.	1.2	0
66	Pediatric Brain Tumors: Current Knowledge and Therapeutic Opportunities. Journal of Pediatric Hematology/Oncology, 2016, 38, 249-260.	0.6	26
67	Alterations in cellular metabolome after pharmacological inhibition of <scp>N</scp> otch in glioblastoma cells. International Journal of Cancer, 2016, 138, 1246-1255.	5.1	32
68	The transcriptional modulator HMGA2 promotes stemness and tumorigenicity in glioblastoma. Cancer Letters, 2016, 377, 55-64.	7.2	50
69	DiSCoVERing Innovative Therapies for Rare Tumors: Combining Genetically Accurate Disease Models with <i>In Silico</i> Analysis to Identify Novel Therapeutic Targets. Clinical Cancer Research, 2016, 22, 3903-3914.	7.0	54
70	MB-103DiSCoVERing INNOVATIVE THERAPIES: COMBINING GENETICALLY ACCURATE DISEASE MODELS OF MEDULLOBLASTOMA WITH ADVANCED IN SILICO ANALYSIS TO IDENTIFY NOVEL THERAPEUTIC TARGETS. Neuro-Oncology, 2016, 18, iii120.3-iii120.	1.2	0
71	Diffusion tensor imaging suggests extrapontine extension of pediatric diffuse intrinsic pontine gliomas. European Journal of Radiology, 2016, 85, 700-706.	2.6	10
72	Disrupting NOTCH Slows Diffuse Intrinsic Pontine Glioma Growth, Enhances Radiation Sensitivity, and Shows Combinatorial Efficacy With Bromodomain Inhibition. Journal of Neuropathology and Experimental Neurology, 2015, 74, 778-790.	1.7	61

#	Article	IF	Citations
73	MB-27 * PATHWAY ANALYSIS OF A HUMAN NEURAL STEM CELL MODEL OF AGGRESSIVE MEDULLOBLASTOMA REVEALS CKD INBHIBITION AS A POTENTIAL THERAPEUTIC MODALITY. Neuro-Oncology, 2015, 17, iii25-iii26.	1.2	0
74	BT-02 * FUNCTIONALLY-DEFINED THERAPEUTIC TARGETS IN DIFFUSE INTRINSIC PONTINE GLIOMA. Neuro-Oncology, 2015, 17, iii3-iii3.	1.2	2
75	Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 2015, 21, 555-559.	30.7	473
76	The Chromatin-Modifying Protein HMGA2 Promotes Atypical Teratoid/Rhabdoid Cell Tumorigenicity. Journal of Neuropathology and Experimental Neurology, 2015, 74, 177-185.	1.7	26
77	Notch Signaling Activation in Pediatric Low-Grade Astrocytoma. Journal of Neuropathology and Experimental Neurology, 2015, 74, 121-131.	1.7	6
78	ZEB1 Promotes Invasion in Human Fetal Neural Stem Cells and Hypoxic Glioma Neurospheres. Brain Pathology, 2015, 25, 724-732.	4.1	59
79	Disrupting LIN28 in atypical teratoid rhabdoid tumors reveals the importance of the mitogen activated protein kinase pathway as a therapeutic target. Oncotarget, 2015, 6, 3165-3177.	1.8	66
80	mTOR: a new therapeutic target for pediatric low-grade glioma?. CNS Oncology, 2014, 3, 89-91.	3.0	8
81	Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma. Acta Neuropathologica Communications, 2014, 2, 59.	5.2	35
82	HIGHLY SELECTIVE INTRA-ARTERIAL CHEMOTHERAPY FOR THE TREATMENT OF PROGRESSIVE DIFFUSE INTRINSIC PONTINE GLIOMAS (DIPG). Neuro-Oncology, 2014, 16, iii29-iii29.	1.2	1
83	Management of Pediatric and Adult Patients with Medulloblastoma. Current Treatment Options in Oncology, 2014, 15, 581-594.	3.0	82
84	Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro-Oncology, 2013, 15, 1604-1614.	1.2	62
85	A glioblastoma neurosphere line with alternative lengthening of telomeres. Acta Neuropathologica, 2013, 126, 607-608.	7.7	9
86	Morphologic Characteristics and Immunohistochemical Profile of Diffuse Intrinsic Pontine Gliomas. American Journal of Surgical Pathology, 2013, 37, 1357-1364.	3.7	55
87	New Strategies in Pediatric Gliomas: Molecular Advances in Pediatric Low-Grade Gliomas as a Model. Clinical Cancer Research, 2013, 19, 4553-4558.	7.0	31
88	Therapeutic Targeting of Developmental Signaling Pathways in Medulloblastoma: Hedgehog, Notch, Wnt and Myc. Current Signal Transduction Therapy, 2013, 8, 55-66.	0.5	5
89	LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget, 2013, 4, 1050-1064.	1.8	63
90	Methylome Alterations "Mark―New Therapeutic Opportunities in Glioblastoma. Cancer Cell, 2012, 22, 417-418.	16.8	9

#	ARTICLE	IF	CITATION
91	Subtotal Splenic Embolization is a Safe and Effective Treatment for Isolated Splenic Vascular Tumors Associated With Consumptive Coagulopathy. Journal of Pediatric Hematology/Oncology, 2011, 33, 383-386.	0.6	3
92	BRAF Activation Induces Transformation and Then Senescence in Human Neural Stem Cells: A Pilocytic Astrocytoma Model. Clinical Cancer Research, 2011, 17, 3590-3599.	7.0	167
93	Highâ€risk medulloblastoma: Does <i>câ€myc</i> amplification overrule histopathology?. Pediatric Blood and Cancer, 2010, 54, 344-345.	1.5	3
94	Neural cell adhesion molecule (NCAM) isoform expression is associated with neuroblastoma differentiation status. Pediatric Blood and Cancer, 2008, 51, 10-16.	1.5	37
95	Growth retardation and premature aging phenotypes in mice with disruption of the SNF2-like gene, PASG. Genes and Development, 2004, 18, 1035-1046.	5.9	163
96	An SNF2 factor involved in mammalian development and cellular proliferation. Developmental Dynamics, 2001, 221, 92-105.	1.8	25
97	Differential laminin isoform expression in the developing rat olfactory system. Developmental Brain Research, 1997, 101, 187-196.	1.7	15