Ingrid van der Pluijm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6878067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Omics Profiling in Marfan Syndrome: Further Insights into the Molecular Mechanisms Involved in Aortic Disease. International Journal of Molecular Sciences, 2022, 23, 438.	4.1	10
2	Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Frontiers in Medicine, 2022, 9, 814123.	2.6	4
3	Transforming Growth Factor-Î ² and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovascular Drugs and Therapy, 2021, 35, 1233-1252.	2.6	22
4	Selective Phosphodiesterase 1 Inhibition Ameliorates Vascular Function, Reduces Inflammatory Response, and Lowers Blood Pressure in Aging Animals. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 173-183.	2.5	9
5	Molecular phenotyping and functional assessment of smooth muscle-like cells with pathogenic variants in aneurysm genes <i>ACTA2</i> , <i>MYH11</i> , <i>SMAD3</i> and <i>FBN1</i> . Human Molecular Genetics, 2021, 30, 2286-2299.	2.9	7
6	Vascular Ageing Features Caused by Selective DNA Damage in Smooth Muscle Cell. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	4.0	15
7	In Vivo Renin Activity Imaging in the Kidney of Progeroid Ercc1 Mutant Mice. International Journal of Molecular Sciences, 2021, 22, 12433.	4.1	2
8	Pre-Operative Fasting Provides Long Term Protection Against Chronic Renal Damage Induced by Ischaemia Reperfusion Injury in Wild Type and Aneurysm Prone Fibulin-4 Mice. European Journal of Vascular and Endovascular Surgery, 2020, 60, 905-915.	1.5	3
9	Chronic Sildenafil Treatment Improves Vasomotor Function in a Mouse Model of Accelerated Aging. International Journal of Molecular Sciences, 2020, 21, 4667.	4.1	10
10	Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects. Human Molecular Genetics, 2020, 29, 1476-1488.	2.9	5
11	Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. Clinical Science, 2020, 134, 727-746.	4.3	25
12	Abnormal Aortic Wall Properties in Women with Turner Syndrome. Aorta, 2020, 08, 121-131.	0.5	5
13	Fibulin-4 deficiency differentially affects cytoskeleton structure and dynamics as well as TGFÎ ² signaling. Cellular Signalling, 2019, 58, 65-78.	3.6	14
14	Brain Renin–Angiotensin System. Hypertension, 2017, 69, 1136-1144.	2.7	69
15	Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1î"/â^' mice. Clinical Science, 2017, 131, 1941-1953.	4.3	14
16	Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging. PLoS ONE, 2016, 11, e0149941.	2.5	23
17	The renin–angiotensin system and its involvement in vascular disease. European Journal of Pharmacology, 2015, 763, 3-14.	3.5	94
18	Cockayne Syndrome Group B (Csb) and Group A (Csa) Deficiencies Predispose to Hearing Loss and Cochlear Hair Cell Degeneration in Mice. Journal of Neuroscience, 2015, 35, 4280-4286.	3.6	19

Ingrid van der Pluijm

#	Article	IF	CITATIONS
19	Cell-Autonomous Progeroid Changes in Conditional Mouse Models for Repair Endonuclease XPG Deficiency. PLoS Genetics, 2014, 10, e1004686.	3.5	54
20	Priming of microglia in a DNA-repair deficient model of accelerated aging. Neurobiology of Aging, 2014, 35, 2147-2160.	3.1	111
21	Extracellular Matrix Defects in Aneurysmal Fibulin-4 Mice Predispose to Lung Emphysema. PLoS ONE, 2014, 9, e106054.	2.5	17
22	Nucleotide Excision DNA Repair Is Associated With Age-Related Vascular Dysfunction. Circulation, 2012, 126, 468-478.	1.6	153
23	Accelerated loss of hearing and vision in the DNA-repair deficient Ercc1Î′Jâ^' mouse. Mechanisms of Ageing and Development, 2012, 133, 59-67.	4.6	13
24	Broad segmental progeroid changes in short-lived <i>Ercc1</i> ^{â^'(Δ7} mice. Pathobiology of Aging & Age Related Diseases, 2011, 1, 7219.	1.1	79
25	Age-related motor neuron degeneration in DNA repair-deficient Ercc1 mice. Acta Neuropathologica, 2010, 120, 461-475.	7.7	86
26	Impaired Genome Maintenance Suppresses the Growth Hormone–Insulin-Like Growth Factor 1 Axis in Mice with Cockayne Syndrome. PLoS Biology, 2006, 5, e2.	5.6	200