
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6877973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of Chemical Research in Nice, Côte d′Azur: From Early Laboratories to the â€~Institut de Chimie de Nice'. ChemPlusChem, 2022, , e202100532.	2.8	0
2	Front Cover: Evolution of Chemical Research in Nice, Côte d′Azur: From Early Laboratories to the †Institut de Chimie de Nice'(ChemPlusChem 6/2022). ChemPlusChem, 2022, 87, .	2.8	0
3	Metal Triflates as Catalysts in Organic Synthesis: Determination of Their Lewis Acidity by Mass Spectrometry. ChemPlusChem, 2022, 87, e202200037.	2.8	3
4	Energetics and Structures of Adducts of JohnPhos(Au+), PPh3(Au+), and IPr(Au+) with Organic Substrates: A Mass Spectrometry and DFT Study. Organometallics, 2021, 40, 1642-1653.	2.3	0
5	Bi(OTf)3-catalysed intramolecular cyclisation of unsaturated acetals. RSC Advances, 2021, 11, 21066-21072.	3.6	4
6	Heterogeneous catalysis for the tandem cyclisation of unsaturated alcohols. New Journal of Chemistry, 2020, 44, 10479-10483.	2.8	1
7	In(OTf) ₃ -catalysed easy access to dihydropyranocoumarin and dihydropyranochromone derivatives. New Journal of Chemistry, 2020, 44, 6042-6052.	2.8	6
8	Bi(OTf)3-catalysed regioselective arylation of Morita-Baylis-Hillman type allylic electrophiles. Tetrahedron Letters, 2020, 61, 151758.	1.4	4
9	Cyclisation Reactions Involving Alkyl Enol Ethers. Advanced Synthesis and Catalysis, 2019, 361, 5284-5304.	4.3	34
10	Synthesis and olfactory evaluation of allylic αâ€quaternary ether ketones. Flavour and Fragrance Journal, 2019, 34, 90-103.	2.6	0
11	Quality Control of a Functionalized Polymer Catalyst by Energy Dispersive X-ray Spectrometry (EDX or) Tj ETQq1	1 0.7843	14 rgBT /Ove
12	Synthesis and olfactory evaluation of allylic αâ€quaternary thioether ketones. Flavour and Fragrance Journal, 2019, 34, 36-42.	2.6	2
13	Stereocontrolled Cascade Cyclisation of Campholenic Enol Ether Derivatives: En Route to Vetiver‣cented Spiroxides. European Journal of Organic Chemistry, 2018, 2018, 980-989.	2.4	6
14	Synthesis of α-oxygenated β,γ-unsaturated ketones by a catalytic rearrangement strategy. Organic and Biomolecular Chemistry, 2018, 16, 5441-5445.	2.8	5
15	Bond Strength and Reactivity Scales for Lewis Superacid Adducts: A Comparative Study with In(OTf) ₃ and Al(OTf) ₃ . ChemPhysChem, 2017, 18, 683-691.	2.1	12
16	Tuning the Reactivity of Functionalized Diallylic Alcohols: BrÃ,nsted versus Lewis Acid Catalysis. Chemistry - A European Journal, 2017, 23, 10285-10288.	3.3	14
17	Electrochemical cyclizations of organic halides catalyzed by electrogenerated nickel(I) complexes: towards environmentally friendly methodologies. Electrochimica Acta, 2017, 242, 373-381.	5.2	14
18	Quantitative Ligand Affinity Scales for Metal Triflate Salts: Application to Isomer Differentiation. ChemPlusChem, 2017, 82, 498-506.	2.8	5

#	Article	IF	CITATIONS
19	Electrosynthesis of boronic acids and esters. Current Opinion in Electrochemistry, 2017, 2, 38-42.	4.8	5
20	Atomâ€Economic Catalytic Direct Substitution of N,Oâ€Acetals with Simple Ketones. European Journal of Organic Chemistry, 2017, 2017, 4445-4460.	2.4	6
21	Cyclisations Catalysed by Bismuth(III) Triflate. European Journal of Organic Chemistry, 2017, 2017, 761-780.	2.4	52
22	Synthesis and olfactory evaluation of spiro tricyclic diether structures. Flavour and Fragrance Journal, 2017, 32, 119-125.	2.6	5
23	Metal Sulfonate Polymers as Catalysts for the Heterogeneous Acylation of Aromatic Derivatives. European Journal of Organic Chemistry, 2016, 2016, 3126-3129.	2.4	9
24	Enolizable Carbonyls and <i>N</i> , <i>O</i> â€Acetals: A Rational Approach for Roomâ€Temperature Lewis Superacidâ€Catalyzed Direct αâ€Amidoalkylation of Ketones and Aldehydes. Chemistry - A European Journal, 2016, 22, 6012-6022.	3.3	15
25	New aromatic polymer electrolytes for application in lithium metal batteries. New Journal of Chemistry, 2016, 40, 7840-7845.	2.8	4
26	Bismuth(<scp>iii</scp>) triflate-catalysed tandem cyclisations towards complex polycyclic ethers. Organic Chemistry Frontiers, 2016, 3, 999-1003.	4.5	11
27	Catalytic Rearrangement of 2-Alkoxy Diallyl Alcohols: Access to Polysubstituted Cyclopentenones. Organic Letters, 2016, 18, 1326-1329.	4.6	30
28	Synthesis and odour evaluation of allenic derivatives. Flavour and Fragrance Journal, 2015, 30, 478-484.	2.6	3
29	Cycloisomerization of Allene–Enol Ethers under Bi(OTf)3 Catalysis. Organic Letters, 2015, 17, 1002-1005.	4.6	26
30	Synthesis and odour evaluation of tricyclic ether derivatives containing a <i>cis</i> â€1,2â€dimethyl norbornane moiety. Flavour and Fragrance Journal, 2015, 30, 165-170.	2.6	2
31	Catalysis of the acylation of aromatic derivatives by metallic tosylates. Tetrahedron, 2015, 71, 6813-6817.	1.9	4
32	Access to Polycyclic Derivatives by Triflate atalyzed Intramolecular Hydroarylation. European Journal of Organic Chemistry, 2014, 2014, 7458-7468.	2.4	23
33	CarbonCarbon Bond Formation by <i>Lewis</i> Superacid Catalysis. Chemistry and Biodiversity, 2014, 11, 1752-1763.	2.1	6
34	Poly(vinyl alcohol) functionalization with aldehydes in organic solvents: Shining properties of poly(vinyl acetals). Journal of Applied Polymer Science, 2014, 131, .	2.6	7
35	Metalâ€Triflateâ€Catalyzed Synthesis of Polycyclic Tertiary Alcohols by Cyclization of γâ€Allenic Ketones. Angewandte Chemie - International Edition, 2014, 53, 4177-4180.	13.8	25
36	On the Catalysis of the Cycloisomerization of 1,6â€Dienes with Tin(IV) Salts: The Important Role of a Water Molecule. ChemCatChem, 2014, 6, 500-507.	3.7	10

#	Article	IF	CITATIONS
37	Preparation and olfactory evaluation of mono―and bicyclic compounds featuring <i>gem</i> â€dimethylcyclohexane structures. Flavour and Fragrance Journal, 2014, 29, 59-66.	2.6	2
38	Bi(OTf) ₃ -catalysed synthesis of substituted indanes by a double hydroarylation of unactivated 1,3-dienes. Organic Chemistry Frontiers, 2014, 1, 765-769.	4.5	18
39	Application of Cooperative Iron/Copper Catalysis to a Palladium-Free Borylation of Aryl Bromides with Pinacolborane. Organic Letters, 2014, 16, 2366-2369.	4.6	62
40	Catalytic Activation of Olefins by Metal Triflates and Triflimides: Application to Fragrance Chemistry. Chemistry - A European Journal, 2013, 19, 3270-3280.	3.3	21
41	Synthesis and odour evaluation of alcohols bearing a <i>cis</i> â€1,2â€dimethyl norbornane moiety. Flavour and Fragrance Journal, 2013, 28, 53-61.	2.6	3
42	Metal triflates and triflimides as Lewis "superacids― preparation, synthetic application and affinity tests by mass spectrometry. Journal of Physical Organic Chemistry, 2013, 26, 87-97.	1.9	23
43	A Quantitative Approach of the Interaction between Metal Triflates and Organic Ligands Using Electrospray Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2012, 23, 2059-2062.	2.8	9
44	Experimental and Theoretical Studies on the Bismuthâ€Triflateâ€Catalysed Cycloisomerisation of 1,6,10â€Trienes and Aryl Polyenes. Chemistry - A European Journal, 2012, 18, 16815-16822.	3.3	36
45	Bi(OTf) ₃ -Catalyzed Cycloisomerization of Aryl-Allenes. Organic Letters, 2012, 14, 2750-2753.	4.6	54
46	C–O and C–C bond formation in the cyclisation of gem-(dialkoxymethyl)-1,6-dienes catalysed by tin(IV) triflimidate at room temperature. Tetrahedron Letters, 2012, 53, 5102-5105.	1.4	7
47	Catalytic Versatility and Backups in Enzyme Active Sites: The Case of Serum Paraoxonase 1. Journal of Molecular Biology, 2012, 418, 181-196.	4.2	148
48	Efficient Preparation of Anhydrous Metallic Triflates and Triflimides under Ultrasonic Activation. European Journal of Organic Chemistry, 2012, 2012, 901-904.	2.4	18
49	Biomimetic Cationic Polyannulation Reaction Catalyzed by Bi(OTf) ₃ : Cyclization of 1,6-Dienes, 1,6,10-Trienes, and Aryl Polyenes. Organic Letters, 2011, 13, 3320-3323.	4.6	40
50	Efficient Intramolecular Hydroarylation Catalysed by Bi ^{III} Triflate. European Journal of Organic Chemistry, 2011, 2011, 3710-3714.	2.4	40
51	In ^{III} atalysed Tandem C–C and C–O Bond Formation between Phenols and Allylic Acetates. European Journal of Organic Chemistry, 2010, 2010, 6239-6248.	2.4	28
52	Synthesis of New <i>exo</i> ―and <i>endo</i> â€3,8â€Đihydroâ€ <i>β</i> â€santalols and Other Norbornylâ€De Alcohols. Chemistry and Biodiversity, 2010, 7, 623-638.	rived 2.1	12
53	<i>N</i> â€Acyliminium Ion Chemistry: Highly Efficient and Versatile Carbon–Carbon Bond Formation by Nucleophilic Substitution of Hydroxy Groups Catalyzed by Sn(NTf ₂) ₄ . Angewandte Chemie - International Edition, 2010, 49, 776-780.	13.8	71
54	Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis—The Effect of a Highly Delocalized Counteranion. Angewandte Chemie - International Edition, 2010, 49, 7860-7888.	13.8	174

#	Article	IF	CITATIONS
55	Flavouring and odorant thiols from renewable natural resources by InIII-catalysed hydrothioacetylation and lipase-catalysed solvolysis. Tetrahedron Letters, 2010, 51, 2164-2167.	1.4	14
56	Mass spectrometric characterization of metal triflates and triflimides (Lewis superacid catalysts) by electrospray ionization and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2611-2619.	1.5	17
57	An Opportunity for Mg-Catalyzed Grignard-Type Reactions: Direct Coupling of Benzylic Halides with Pinacolborane with 10 mol % of Magnesium. Journal of the American Chemical Society, 2010, 132, 11825-11827.	13.7	62
58	Relative basicities toward metal triflates Lewis acids by electrospray mass spectrometry. Chemical Communications, 2010, 46, 8472.	4.1	9
59	Aluminium Triflate Catalysed Cyclisation of Unsaturated Alcohols: Novel Synthesis of Rose Oxide and Analogues. European Journal of Organic Chemistry, 2009, 2009, 5788-5795.	2.4	27
60	Catalytic Friedel–Crafts allylation using Zn(II) triflimidate. Comptes Rendus Chimie, 2009, 12, 916-921.	0.5	12
61	Radical-type reactions in protic and aprotic media: Comparisons in nickel-catalysed electrochemical reductive cyclisations. Comptes Rendus Chimie, 2009, 12, 889-894.	0.5	14
62	Electrochemical preparation of pinacol allylboronic esters. Electrochimica Acta, 2009, 54, 5116-5119.	5.2	13
63	Tin(IV) triflimidate-catalyzed cyclization of epoxy esters to functionalized Β-hydroxy-γ-lactones. Tetrahedron Letters, 2009, 50, 2536-2539.	1.4	21
64	Lewis superacids derived from triflic and triflimidic acids and their use as catalysts in 1,6-diene cycloisomerisation. Comptes Rendus Chimie, 2009, 12, 911-915.	0.5	3
65	New Aldehydes by Catalytic Diene Cycloisomerisations. European Journal of Organic Chemistry, 2008, 2008, 1214-1223.	2.4	7
66	<i>Lewis</i> Superâ€Acid Catalyzed Cyclizations: A New Route to Fragrance Compounds. Chemistry and Biodiversity, 2008, 5, 1070-1082.	2.1	18
67	New Norbornyl Derivatives as Woody Fragrant Materials. Chemistry and Biodiversity, 2008, 5, 1099-1114.	2.1	5
68	Stereospecific cyclodehydration of 1,4-sulfanylalcohols to thiolanes: mechanistic insights. Tetrahedron, 2008, 64, 9999-10003.	1.9	6
69	Aluminium triflate-catalysed regioselective cycloisomerisation of non-activated unsaturated oximes. Tetrahedron Letters, 2008, 49, 2384-2387.	1.4	31
70	Facile preparation of metallic triflates and triflimidates by oxidative dissolution of metal powders. Chemical Communications, 2008, , 993.	4.1	29
71	Indium Triflate-Catalysed Addition of Thio Compounds to Camphene: A Novel Route to 2,3,3-Trimethyl-2-thiobicyclo[2.2.1]heptane Derivatives. European Journal of Organic Chemistry, 2007, 2007, 2464-2469.	2.4	38
72	Hydroalkoxylation of non-activated olefins catalysed by Lewis superacids in alcoholic solvents: an eco-friendly reaction. Tetrahedron Letters, 2007, 48, 5731-5734.	1.4	35

#	Article	IF	CITATIONS
73	Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chemical Communications, 2006, , 332-334.	4.1	86
74	Intramolecular reductive cyclisations using electrochemistry: development of environmentally friendly synthetic methodologies. New Journal of Chemistry, 2006, 30, 1534-1548.	2.8	36
75	Indium(III)-catalysed highly regioselective addition of thiolacetic acid to non-activated olefins. Tetrahedron Letters, 2006, 47, 287-289.	1.4	28
76	Lewis acid-catalysed isomerisation of thionolactones to thiolactones: inversion of configuration. Tetrahedron Letters, 2006, 47, 6067-6070.	1.4	19
77	Density functional theory investigations on acid-catalysed epoxide oxidative ring-opening by DMSO. Competition between oxidation processes. Computational and Theoretical Chemistry, 2006, 763, 155-159.	1.5	2
78	Aluminium(III) Trifluoromethanesulfonate as an Efficient Catalyst for the Intramolecular Hydroalkoxylation of Unactivated Olefins: Experimental and Theoretical Approaches. Chemistry - A European Journal, 2006, 12, 6356-6365.	3.3	111
79	Cycloisomerization of 1,6-Dienes Mediated by Lewis Super Acids without Additives: Easy Access to Polysubstituted Six-Membered Carbocycles. Angewandte Chemie - International Edition, 2006, 45, 7285-7289.	13.8	57
80	Novel Catalytic Tandem Isomerisation/Cyclisation Reaction of α-Methallyloxy Carboxylic Acids. European Journal of Organic Chemistry, 2006, 2006, 3554-3557.	2.4	35
81	Nickel-Catalyzed Electrochemical Synthesis of Dihydro-benzo[b]thiophene Derivatives ChemInform, 2005, 36, no.	0.0	Ο
82	Recent Uses of Bismuth Derivatives in Organic Synthesis. ChemInform, 2005, 36, no.	0.0	0
83	Cycloisomerization of Olefinic Carboxylic Acids Catalyzed by Trifluoromethanesulfonic Acid ChemInform, 2005, 36, no.	0.0	0
84	Catalytic formation of C–O bonds by alkene activation: Lewis acid-cycloisomerisation of olefinic alcohols. Chemical Communications, 2005, , 2286.	4.1	77
85	Electrochemical intramolecular cyclisation of propargyl bromoethers catalysed by nickel complexes. New Journal of Chemistry, 2005, 29, 633-636.	2.8	20
86	Cycloisomerization of Olefinic Carboxylic Acids Catalyzed by Trifluoromethanesulfonic Acid. Synthetic Communications, 2005, 35, 153-160.	2.1	30
87	Nickel atalyzed Electrochemical Synthesis of Dihydroâ€Benzo[b]thiophene Derivatives. Synthetic Communications, 2004, 34, 3343-3348.	2.1	10
88	Studies on the catalytic oxidation of epoxides to α-diketones by Bi(0)/O2 in DMSO. Journal of Molecular Catalysis A, 2004, 208, 135-145.	4.8	18
89	Mechanistic Aspects of the Bismuth-Catalysed Oxidation of Epoxides toα-Diketones. European Journal of Organic Chemistry, 2004, 2004, 3459-3464.	2.4	24
90	Catalytic epoxide oxidation: a novel access toï¬,avouring and odorantα-diketones. Flavour and Fragrance Journal, 2004, 19, 373-381.	2.6	9

#	Article	IF	CITATIONS
91	Utilisations récentes de dérivés du bismuth en synthèse organique. Comptes Rendus Chimie, 2004, 7, 679-688.	0.5	10
92	CoCl2catalysed decarboxylation-oxidation of mandelic acids by molecular oxygen. New Journal of Chemistry, 2004, 28, 62-66.	2.8	21
93	Triflic acid-catalysed cyclisation of unsaturated alcohols. Green Chemistry, 2004, 6, 499-501.	9.0	63
94	Carbonâ^'Carbon Bond Formation with Electrogenerated Nickel and Palladium Complexes. European Journal of Organic Chemistry, 2003, 2003, 1605-1622.	2.4	57
95	New Electrosynthesis of Arylboronic Esters from Aromatic Halides and Pinacolborane. Advanced Synthesis and Catalysis, 2003, 345, 580-583.	4.3	21
96	Carbon—Carbon Bond Formation with Electrogenerated Nickel and Palladium Complexes. ChemInform, 2003, 34, no.	0.0	2
97	New Electrosynthesis of Arylboronic Esters from Aromatic Halides and Pinacolborane ChemInform, 2003, 34, no.	0.0	0
98	Novel electrosynthesis of metallic bis(trifluoromethanesulfonyl) imides. Tetrahedron Letters, 2003, 44, 2031-2032.	1.4	38
99	Oxidation of mandelic acid derivatives catalysed by Bi(0)/O2 systems: mechanistic considerations. Tetrahedron, 2003, 59, 1823-1830.	1.9	17
100	Nouvelle méthode de synthèse d'acides et d'esters arylboroniques par électroréduction de dériv aromatiques halogénés en présence d'agents boratants. Comptes Rendus Chimie, 2003, 6, 185-187.	vés 0.5	7
101	Novel synthesis of arylboronic acids by electroreduction of aromatic halides in the presence of trialkyl borates. New Journal of Chemistry, 2002, 26, 373-375.	2.8	31
102	Intramolecular Allyl Transfer Reaction from Allyl Ether to Aldehyde Groups: Experimental and Theoretical Studies. Chemistry - A European Journal, 2002, 8, 664-672.	3.3	18
103	Bi0-Catalyzed Oxidation of Mandelic Acid Derivatives: Substrate Selectivity. European Journal of Organic Chemistry, 2002, 2002, 1984.	2.4	16
104	Electrochemical Reduction of a Racemic Allyl β-Keto Ester Catalyzed by Nickel Complexes: Asymmetric Induction. European Journal of Organic Chemistry, 2002, 2002, 2257.	2.4	27
105	Thiazolidines and their oxidation products as flavouring compounds. Flavour and Fragrance Journal, 2002, 17, 432-439.	2.6	9
106	Regioselectivity in the intramolecular allyl transfer reaction catalysed by electrogenerated nickel complexes: influence of metal ions. Tetrahedron, 2002, 58, 9289-9296.	1.9	7
107	Direct and catalytic synthesis of quinoxaline derivatives from epoxides and ene-1,2-diamines. Tetrahedron Letters, 2002, 43, 3971-3973.	1.4	204
108	Novel and catalytic oxidation of internal epoxides to α-diketones. Chemical Communications, 2001, , 2566-2567.	4.1	22

#	Article	IF	CITATIONS
109	Chemo- and regioselective synthesis of alkyl-3-thiazoline carboxylates. Tetrahedron Letters, 2001, 42, 1519-1521.	1.4	16
110	Asymmetric synthesis of 2-alkyl-3-thiazoline carboxylates: stereochemistry of the MnO2-mediated oxidation of cis- and trans-2-alkyl-thiazolidine-(4R)-carboxylates. Tetrahedron: Asymmetry, 2001, 12, 1279-1286.	1.8	16
111	Identification of thiazolidines in guava: stereochemical studies. Flavour and Fragrance Journal, 2001, 16, 274-280.	2.6	12
112	Bi0/O2 as a New Catalytic System for the Oxidation of α-Ketols, α-Hydroxy Acids and Epoxides. European Journal of Organic Chemistry, 2001, 2001, 735-740.	2.4	24
113	Electrosynthesis of Substituted Benzolactones by a Nickel-Catalyzed Allyl Transfer Reaction from Allyl Benzoates. Synlett, 2001, 2001, 0806-0808.	1.8	10
114	New and mild allyl carbamate deprotection method catalyzed by electrogenerated nickel complexes. Tetrahedron Letters, 2000, 41, 7333-7336.	1.4	22
115	Novel synthesis of 2-thiazolines. Tetrahedron Letters, 2000, 41, 3381-3384.	1.4	45
116	Electrosynthesis of Benzolactones by Nickel-Catalyzed Carboxylation of Epoxide-Functionalized Aromatic Halides. Synlett, 2000, 2000, 245-247.	1.8	13
117	Electrochemical Reduction of Allyl Ethers in the Presence of Nickel Complexes: A Review of Synthetic Applications. Collection of Czechoslovak Chemical Communications, 2000, 65, 844-861.	1.0	15
118	Palladium Complexes with Chiral Oxazoline Ligands. Effect of Chelate Size on Catalytic Allylic Substitutions. Organometallics, 2000, 19, 966-978.	2.3	40
119	Electrochemical Studies on the Nickel-Catalyzed Oâ^C(allyl) Bond Cleavage of Allyl Ethers. Organometallics, 2000, 19, 2798-2804.	2.3	16
120	Intramolecular propargyl transfer reaction catalyzed by electrogenerated nickel complexes. Tetrahedron Letters, 1999, 40, 2951-2954.	1.4	14
121	First example of double bond migration in the electrochemical CO2 incorporation into (perfluoroalkyl)alkenes. Tetrahedron Letters, 1998, 39, 4831-4834.	1.4	15
122	Electrochemical Studies of Ni(cyclam)2+-Catalyzed Annulation Reactions. Organometallics, 1998, 17, 3747-3753.	2.3	54
123	BiBr3-catalysed formation of cyclic carbonates from epoxides and DMF: a new oxidation reaction with molecular oxygen. Chemical Communications, 1997, , 95-96.	4.1	20
124	New Open Tetraaza Nickel(II) and Palladium(II) Complexes. Different Reactivity of the Electrogenerated M(0) Species toward Difunctional Substrates. Organometallics, 1997, 16, 5900-5908.	2.3	18
125	Bi(III) as New Catalyst for the Selective Hydrolysis of Esters. Tetrahedron Letters, 1997, 38, 2981-2984.	1.4	33
126	Nickel-Catalysed Electroreductive Cleavage of Propargyl Compounds. Tetrahedron Letters, 1997, 38, 6193-6196.	1.4	35

#	Article	IF	CITATIONS
127	Intramolecular allyl transfer reactions catalyzed by electrogenerated nickel-bipyridine complexes: electrosynthesis of homoallylic alcohols. Electrochimica Acta, 1997, 42, 2159-2164.	5.2	15
128	A new tetradentate nitrogen ligand for organometallic catalysis: electrochemical nickel-catalyzed intramolecular cyclization. Journal of Organometallic Chemistry, 1995, 503, C48-C50.	1.8	16
129	Electrochemical intramolecular reductive cyclisation catalysed by electrogenerated Ni(cyclam)2+. Tetrahedron Letters, 1995, 36, 4429-4432.	1.4	53
130	Novel electrochemical reactivity of Ni(cyclam)Br2: catalytic carbon dioxide incorporation into epoxides. Journal of the Chemical Society Chemical Communications, 1995, , 43-44.	2.0	31
131	Nickel-catalysed electrochemical reductive deprotection of allyl ethers. Journal of the Chemical Society Chemical Communications, 1995, , 2497-2498.	2.0	32
132	Ligand Controlled Carbon-Carbon Bond FormationversusCarbon-Oxygen Bond Cleavage in the Nickel-Catalyzed Electrochemical Reduction of Allyl o-Halophenyl Ethers. Synlett, 1994, 1994, 531-533.	1.8	24
133	Bismuth(III)-catalyzed oxidative cleavage of aryl epoxides: Substituent effects on the kinetics of the oxidation reaction. Journal of Organometallic Chemistry, 1994, 482, 119-123.	1.8	26
134	SmCl3-catalyzed electrochemical reductive allylation of ketones. Tetrahedron Letters, 1993, 34, 1475-1478.	1.4	26
135	Bi(III)-mandelate/DMSO : A new oxidizing system for the catalyzed Cî—,C cleavage of epoxides. Tetrahedron Letters, 1993, 34, 2601-2604.	1.4	35
136	Activation of carbon dioxide: nickel-catalyzed electrochemical carboxylation of diynes. Journal of Organic Chemistry, 1993, 58, 2578-2588.	3.2	76
137	Electrochemical incorporation of carbon dioxide into alkenes by nickel complexes. Tetrahedron, 1992, 48, 5235-5248.	1.9	78
138	New Cî—,C bond formation through the nickel-catalysed electrochemical coupling of 1,3-enynes and carbon dioxide. Journal of Organometallic Chemistry, 1992, 424, 213-224.	1.8	33
139	First example of direct carbon dioxide incorporation into 1,3-diynes: a highly regio- and stereo-selective nickel-catalysed electrochemical reaction. Journal of the Chemical Society Chemical Communications, 1991, , 549-550.	2.0	35
140	From stoichiometry to catalysis: electroreductive coupling of alkynes and carbon dioxide with nickel-bipyridine complexes. Magnesium ions as the key for catalysis. Journal of the American Chemical Society, 1991, 113, 8447-8454.	13.7	160
141	New Catalytic System for the Activation of Carbon Dioxide and Alkynes Based on Electrogenerated Nickel Complexes. Synlett, 1990, 1990, 143-145.	1.8	23
142	Nickel-catalyzed reductive electrocarboxylation of disubstituted alkynes. Journal of Organometallic Chemistry, 1989, 364, C33-C36.	1.8	45
143	Electrochemical carboxylation of terminal alkynes catalyzed by nickel complexes: unusual regioselectivity. Journal of Organometallic Chemistry, 1988, 352, 239-246.	1.8	88
144	Ligand-directed reaction products in the nickel-catalyzed electrochemical carboxylation of terminal alkynes. Journal of Organometallic Chemistry, 1988, 353, C51-C56.	1.8	34

#	Article	IF	CITATIONS
145	Synthesis and odour perception of a series of highly substituted cyclohexane derivatives. Flavour and Fragrance Journal, 0, , .	2.6	1