Sandra Ceccatelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6877751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glyphosateâ€based herbicide induces longâ€lasting impairment in neuronal and glial differentiation. Environmental Toxicology, 2022, 37, 2044-2057.	2.1	5
2	Patterns of activity correlate with symptom severity in major depressive disorder patients. Translational Psychiatry, 2022, 12, .	2.4	4
3	In utero exposure to dexamethasone causes a persistent and age-dependent exacerbation of the neurotoxic effects and glia activation induced by MDMA in dopaminergic brain regions of C57BL/6J mice. NeuroToxicology, 2021, 83, 1-13.	1.4	5
4	Methylmercury Exposure and Developmental Neurotoxicity: New Insights from Neural Stem Cells. , 2021, , 1-23.		0
5	Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA Journal, 2020, 18, e06223.	0.9	255
6	Desipramine restores the alterations in circadian entrainment induced by prenatal exposure to glucocorticoids. Translational Psychiatry, 2019, 9, 263.	2.4	5
7	NRXN1 Deletion and Exposure to Methylmercury Increase Astrocyte Differentiation by Different Notch-Dependent Transcriptional Mechanisms. Frontiers in Genetics, 2019, 10, 593.	1.1	11
8	Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses. Journal of Neuroscience Methods, 2019, 311, 259-266.	1.3	5
9	Effect on public health of a possible increase of the maximum level for â€~aflatoxin total' from 4 to 10Âμg/kg in peanuts and processed products thereof, intended for direct human consumption or use as an ingredient in foodstuffs. EFSA Journal, 2018, 16, e05175.	0.9	21
10	Methylmercury interferes with glucocorticoid receptor: Potential role in the mediation of developmental neurotoxicity. Toxicology and Applied Pharmacology, 2018, 354, 94-100.	1.3	17
11	Epigenetic mechanisms in developmental neurotoxicity. Neurotoxicology and Teratology, 2018, 66, 94-101.	1.2	18
12	Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA Journal, 2018, 16, e05194.	0.9	171
13	Risk to human and animal health related to the presence of 4,15â€diacetoxyscirpenol in food and feed. EFSA Journal, 2018, 16, e05367.	0.9	16
14	Risk for animal and human health related to the presence of dioxins and dioxinâ€like PCBs in feed and food. EFSA Journal, 2018, 16, e05333.	0.9	110
15	Appropriateness to set a group healthâ€based guidance value for fumonisins and their modified forms. EFSA Journal, 2018, 16, e05172.	0.9	45
16	Update: methodological principles and scientific methods to be taken into account when establishing Reference Points for Action (RPAs) for nonâ€allowed pharmacologically active substances present in food of animal origin. EFSA Journal, 2018, 16, e05332.	0.9	5
17	Assessment of a decontamination process for dioxins and PCBs from fish meal by replacement of fish oil. EFSA Journal, 2018, 16, e05174.	0.9	2
18	Paraquat and Maneb Exposure Alters Rat Neural Stem Cell Proliferation by Inducing Oxidative Stress: New Insights on Pesticide-Induced Neurodevelopmental Toxicity. Neurotoxicity Research, 2018, 34, 820-833.	1.3	40

#	Article	IF	CITATIONS
19	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	0.9	94
20	Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Progress in Neurobiology, 2017, 155, 21-35.	2.8	47
21	Appropriateness to set a group health based guidance value for T2 and HT2 toxin and its modified forms. EFSA Journal, 2017, 15, e04655.	0.9	37
22	Mechanistic insight into neurotoxicity induced by developmental insults. Biochemical and Biophysical Research Communications, 2017, 482, 408-418.	1.0	23
23	Risks for public health related to the presence of tetrodotoxin (TTX) and TTX analogues in marine bivalves and gastropods. EFSA Journal, 2017, 15, e04752.	0.9	64
24	Assessment of a decontamination process for hydrocyanic acid in linseed intended for use in animal feed. EFSA Journal, 2017, 15, e05004.	0.9	0
25	Scientific opinion on the evaluation of substances as acceptable previous cargoes for edible fats and oils. EFSA Journal, 2017, 15, e04656.	0.9	12
26	Depressive-like phenotype induced by prenatal dexamethasone in mice is reversed by desipramine. Neuropharmacology, 2017, 126, 242-249.	2.0	22
27	Cerium oxide nanoparticles inhibit differentiation of neural stem cells. Scientific Reports, 2017, 7, 9284.	1.6	65
28	Gestational Age and Sex Influence the Susceptibility of Human Neural Progenitor Cells to Low Levels of MeHg. Neurotoxicity Research, 2017, 32, 683-693.	1.3	23
29	Risks for public health related to the presence of furan and methylfurans in food. EFSA Journal, 2017, 15, e05005.	0.9	62
30	Presence of free gossypol in whole cottonseed. EFSA Journal, 2017, 15, e04850.	0.9	13
31	Assessment of decontamination processes for dioxins and dioxinâ€like PCBs in fish oil by physical filtration with activated carbon. EFSA Journal, 2017, 15, e05081.	0.9	1
32	Redox unbalance modifies neurogenic potential. Oncotarget, 2017, 8, 3762-3763.	0.8	4
33	Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal, 2017, 15, e04718.	0.9	218
34	Glucocorticoids alter neuronal differentiation of human neuroepithelial-like cells by inducing long-lasting changes in the reactive oxygen species balance. Neuropharmacology, 2016, 107, 422-431.	2.0	23
35	12 Toxicology of Alkylmercury Compounds. , 2015, , 403-434.		0
36	Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors. Cell Death and Disease, 2015, 6, e1793-e1793.	2.7	42

#	Article	IF	CITATIONS
37	Alterations in circadian entrainment precede the onset of depression-like behavior that does not respond to fluoxetine. Translational Psychiatry, 2015, 5, e603-e603.	2.4	21
38	PFOS Induces Behavioral Alterations, Including Spontaneous Hyperactivity That Is Corrected by Dexamfetamine in Zebrafish Larvae. PLoS ONE, 2014, 9, e94227.	1.1	78
39	TrkB overexpression in mice buffers against memory deficits and depression-like behavior but not all anxiety- and stress-related symptoms induced by developmental exposure to methylmercury. Frontiers in Behavioral Neuroscience, 2014, 8, 315.	1.0	22
40	Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARÎ ³ in vitro and in vivo. Toxicology and Applied Pharmacology, 2013, 269, 51-60.	1.3	46
41	Mechanisms of neurotoxicity and implications for neurological disorders. Journal of Internal Medicine, 2013, 273, 426-428.	2.7	7
42	Longâ€lasting neurotoxic effects of exposure to methylmercury during development. Journal of Internal Medicine, 2013, 273, 490-497.	2.7	87
43	Dickkopf 1 Mediates Glucocorticoid-Induced Changes in Human Neural Progenitor Cell Proliferation and Differentiation. Toxicological Sciences, 2012, 125, 488-495.	1.4	53
44	Strategies and tools for preventing neurotoxicity: To test, to predict and how to do it. NeuroToxicology, 2012, 33, 796-804.	1.4	26
45	Galanin and its three receptors in human pituitary adenoma. Neuropeptides, 2012, 46, 195-201.	0.9	8
46	Inherited Effects of Low-Dose Exposure to Methylmercury in Neural Stem Cells. Toxicological Sciences, 2012, 130, 383-390.	1.4	104
47	Molecular Hydrogen Reduces LPS-Induced Neuroinflammation and Promotes Recovery from Sickness Behaviour in Mice. PLoS ONE, 2012, 7, e42078.	1.1	62
48	Methylmercury and Neural Stem Cells. , 2012, , 287-302.		1
49	Behavioural Effects of Exposure to Methylmercury During Early Development. , 2012, , 163-198.		1
50	Neural Stem Cells for Developmental Neurotoxicity Studies. Methods in Molecular Biology, 2011, 758, 67-80.	0.4	22
51	Hippocampal Neurons Exposed to the Environmental Contaminants Methylmercury and Polychlorinated Biphenyls Undergo Cell Death via Parallel Activation of Calpains and Lysosomal Proteases. Neurotoxicity Research, 2011, 19, 183-194.	1.3	44
52	Prenatal Exposure to PFOS or PFOA Alters Motor Function in Mice in a Sex-Related Manner. Neurotoxicity Research, 2011, 19, 452-461.	1.3	114
53	Non–Dioxin-like Polychlorinated Biphenyls Interfere with Neuronal Differentiation of Embryonic Neural Stem Cells. Toxicological Sciences, 2011, 124, 192-201.	1.4	22

54 Neural Stem Cells. Neuromethods, 2011, , 63-85.

0.2 0

#	Article	IF	CITATIONS
55	Are Neuropathological Conditions Relevant to Ethylmercury Exposure?. Neurotoxicity Research, 2010, 18, 59-68.	1.3	37
56	Methylmercury-induced neurotoxicity and apoptosis. Chemico-Biological Interactions, 2010, 188, 301-308.	1.7	256
57	Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. Genes and Immunity, 2010, 11, 11-20.	2.2	43
58	Effects of Maternal Smoking and Exposure to Methylmercury on Brain-Derived Neurotrophic Factor Concentrations in Umbilical Cord Serum. Toxicological Sciences, 2010, 117, 263-269.	1.4	25
59	Glucocorticoids induce long-lasting effects in neural stem cells resulting in senescence-related alterations. Cell Death and Disease, 2010, 1, e92-e92.	2.7	91
60	Expression of p-Akt in Sensory Neurons and Spinal Cord after Peripheral Nerve Injury. NeuroSignals, 2009, 17, 203-212.	0.5	47
61	Single step determination of PCB 126 and 153 in rat tissues by using solid phase microextraction/gas chromatography–mass spectrometry: Comparison with solid phase extraction and liquid/liquid extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009. 877. 773-783.	1.2	20
62	Caspase-2 activation in neural stem cells undergoing oxidative stress-induced apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 354-363.	2.2	52
63	Long″asting depression″ike behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. Journal of Neurochemistry, 2008, 106, 1378-1387.	2.1	243
64	Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology and Pharmacology, 2008, 51, 201-214.	1.3	111
65	Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology, 2008, 51, 215-229.	1.3	101
66	Human developmental neurotoxicity of methylmercury and variables. Regulatory Toxicology and Pharmacology, 2008, 52, 197-198.	1.3	0
67	Methylmercury at low doses modulates the toxicity of PCB153 on PC12 neuronal cell line in asynchronous combination experiments. Food and Chemical Toxicology, 2008, 46, 808-811.	1.8	12
68	Voltage-dependent anion channels (VDAC) in the plasma membrane play a critical role in apoptosis in differentiated hippocampal neurons but not in neural stem cells. Cell Cycle, 2008, 7, 3225-3234.	1.3	61
69	Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2717-2722.	3.3	38
70	Mitochondrial-Mediated Apoptosis in Neural Stem Cells Exposed to Manganese. Toxicological Sciences, 2008, 101, 310-320.	1.4	91
71	Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. NeuroReport, 2008, 19, 339-343.	0.6	58
72	Developmental Exposure to Methylmercury Alters Learning and Induces Depression-like Behavior in Male Mice. Toxicological Sciences, 2007, 97, 428-437.	1.4	166

#	Article	IF	CITATIONS
73	Mechanisms and modulation of neural cell damage induced by oxidative stress. Physiology and Behavior, 2007, 92, 87-92.	1.0	42
74	Gender differences in the disposition and toxicity of metals. Environmental Research, 2007, 104, 85-95.	3.7	571
75	Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotoxicity Research, 2007, 11, 241-260.	1.3	152
76	Children's health and mercury exposure. Acta Paediatrica, International Journal of Paediatrics, 2006, 95, 36-44.	0.7	32
77	In vitro systems to study developmental neurotoxicity of food contaminants. Toxicology Letters, 2006, 164, S24.	0.4	3
78	Changes in daily activity, learning and motivational behavior in male mice exposed to methylmercury during development. Toxicology Letters, 2006, 164, S76.	0.4	0
79	PCB153 and methylmercury (MeHg) assessment of target tissues doses in rats after single and combined exposures: Mothers versus pups comparisons. Toxicology Letters, 2006, 164, S177-S178.	0.4	0
80	Hippocampal neurons undergo apoptotic and necrotic cell death after exposure to methylmercury, PCB 153 and PCB 126. Toxicology Letters, 2006, 164, S207.	0.4	1
81	Competitive and additive effects of methyl-mercury and PCB153 on PC12 cells viability, lipidic peroxidation products (TBARS) and dopamine levels. Toxicology Letters, 2006, 164, S211.	0.4	Ο
82	Cell death mechanisms in AtT20 pituitary cells exposed to polychlorinated biphenyls (PCB 126 and PCB) Tj ETQq	0 0 0 rgB1 0.4	/Overlock 10
83	Antagonistic effects of methyl-mercury and PCB153 on PC12 cells after a combined and simultaneous exposure. Food and Chemical Toxicology, 2006, 44, 1505-1512.	1.8	43
84	Deletion of the neuropeptide YY1 receptor affects pain sensitivity, neuropeptide transport and expression, and dorsal root ganglion neuron numbers. Neuroscience, 2006, 140, 293-304.	1,1	38
85	Sensory neuronal phenotype in galanin receptor 2 knockout mice: focus on dorsal root ganglion neurone development and pain behaviour. European Journal of Neuroscience, 2006, 23, 627-636.	1.2	52
86	High susceptibility of neural stem cells to methylmercury toxicity: effects on cell survival and neuronal differentiation. Journal of Neurochemistry, 2006, 97, 69-78.	2.1	174
87	Carbon monoxide prevents apoptosis induced by uropathogenic Escherichia coli toxins. Pediatric Nephrology, 2006, 21, 382-389.	0.9	21
88	Hypoxia-independent apoptosis in neural cells exposed to carbon monoxide in vitro. Brain Research, 2006, 1098, 1-8.	1.1	30
89	Cell death induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) in AtT-20 pituitary cells. Toxicology, 2005, 207, 391-399.	2.0	12
90	Opening of plasma membrane voltage-dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death and Differentiation, 2005, 12, 1134-1140.	5.0	107

#	Article	IF	CITATIONS
91	Analysis of oxidative stress in SK-N-MC neurons exposed to styrene-7,8-oxide. Toxicology in Vitro, 2005, 19, 11-20.	1.1	30
92	Activation of Extracellular Signal–Regulated Kinase Mediates Apoptosis Induced by UropathogenicEscherichia coliToxins via Nitric Oxide Synthase: Protective Role of Heme Oxygenase–1. Journal of Infectious Diseases, 2004, 190, 127-135.	1.9	37
93	Prenatal Exposure to High Level of Glucocorticoids Increases the Susceptibility of Renal Proximal Tubular Cells to Apoptosis Induced by Uropathogenic <i>Escherichia coli</i> Toxins. American Journal of Nephrology, 2004, 24, 497-502.	1.4	9
94	Differential regulation of the mitochondrial and death receptor pathways in neural stem cells. European Journal of Neuroscience, 2004, 19, 2613-2621.	1.2	50
95	Styrene 7,8-oxide induces mitochondrial damage and oxidative stress in neurons. Toxicology, 2004, 201, 125-132.	2.0	23
96	A Novel Approach Based on Solid Phase Microextraction Gas Chromatography and Mass Spectrometry to the Determination of Highly Reactive Organic Compounds in Cells Cultures:Â Styrene Oxide. Chemical Research in Toxicology, 2004, 17, 104-109.	1.7	6
97	Neural stem cells and cell death. Toxicology Letters, 2004, 149, 59-66.	0.4	59
98	Expression of hypothalamic neuropeptides after acute TCDD treatment and distribution of Ah receptor repressor. Regulatory Peptides, 2004, 119, 113-124.	1.9	27
99	Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367, 500-508.	1.4	60
100	TCDD-induced expression of Ah receptor responsive genes in the pituitary and brain of cellular retinol-binding protein (CRBP-I) knockout mice. Toxicology and Applied Pharmacology, 2003, 192, 262-274.	1.3	18
101	Alterations in the intrauterine environment by glucocorticoids modifies the developmental programme of the auditory system. European Journal of Neuroscience, 2003, 17, 2035-2041.	1.2	54
102	Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro. Risk Analysis, 2003, 23, 505-514.	1.5	32
103	Chronic exposure to 2,5-hexanedione impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in rat brain in vivo. Neurochemistry International, 2003, 42, 525-533.	1.9	12
104	Uropathogenic <i>Escherichia coli</i> Toxins Induce Caspase-Independent Apoptosis in Renal Proximal Tubular Cells via ERK Signaling. American Journal of Nephrology, 2003, 23, 140-151.	1.4	26
105	A study on diurnal mRNA expression of CYP1A1, AHR, ARNT, and PER2 in rat pituitary and liver. Environmental Toxicology and Pharmacology, 2002, 11, 119-126.	2.0	35
106	Constitutive and TCDD-Induced Expression of Ah Receptor-Responsive Genes in the Pituitary. NeuroToxicology, 2002, 23, 783-793.	1.4	35
107	Styrene 7,8-oxide induces caspase activation and regular DNA fragmentation in neuronal cells. Brain Research, 2002, 933, 12-22.	1.1	21
108	Methylmercury induces neurite degeneration in primary culture of mouse dopaminergic mesencephalic cells. Journal of Neural Transmission, 2002, 109, 597-605.	1.4	32

#	Article	IF	CITATIONS
109	Translocation of apoptosis-inducing factor in cerebellar granule cells exposed to neurotoxic agents inducing oxidative stress. European Journal of Neuroscience, 2002, 16, 2013-2016.	1.2	59
110	Cell death in adult neural stem cells. Cell Death and Differentiation, 2002, 9, 1377-1378.	5.0	32
111	Neurotoxicity and molecular effects of methylmercury. Brain Research Bulletin, 2001, 55, 197-203.	1.4	290
112	Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environmental Toxicology and Pharmacology, 2001, 9, 61-70.	2.0	84
113	Apoptotic morphology does not always require caspase activity in rat cerebellar granule neurons. Neurotoxicity Research, 2001, 3, 501-514.	1.3	34
114	Testosterone protects cerebellar granule cells from oxidative stress-induced cell death through a receptor mediated mechanism. Brain Research, 2001, 892, 255-262.	1.1	232
115	Methylmercury and H2O2 provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radical Biology and Medicine, 2001, 30, 1347-1356.	1.3	68
116	Antioxidants J811 and 17?-estradiol protect cerebellar granule cells from methylmercury-induced apoptotic cell death. Journal of Neuroscience Research, 2000, 62, 557-565.	1.3	88
117	Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin on the Expression of Cytochrome P450 1A1, the Aryl Hydrocarbon Receptor, and the Aryl Hydrocarbon Receptor Nuclear Translocator in Rat Brain and Pituitary. Toxicology and Applied Pharmacology, 2000, 169, 159-167.	1.3	114
118	Prenatal exposure to high levels of glucocorticoids increases the susceptibility of cerebellar granule cells to oxidative stress-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14726-14730.	3.3	84
119	Dexamethasone pre-treatment interferes with apoptotic death in glioma cells. Neuroscience, 2000, 96, 417-425.	1.1	80
120	Role of Mitochondria in Neuronal Apoptosis. Developmental Neuroscience, 2000, 22, 348-358.	1.0	72
121	Cytochrome c release and caspase-3 activation during colchicine-induced apoptosis of cerebellar granule cells. European Journal of Neuroscience, 1999, 11, 1067-1072.	1.2	72
122	Androgen treatment of neonatal rats decreases susceptibility of cerebellar granule neurons to oxidative stressin $\hat{a} \in f$ vitro. European Journal of Neuroscience, 1999, 11, 1285-1291.	1.2	71
123	Application of a fluorometric assay to detect caspase activity in thymus tissue undergoing apoptosis in vivo. Journal of Immunological Methods, 1999, 226, 43-48.	0.6	48
124	Radical scavenging compound J 811 inhibits hydrogen peroxide-induced death of cerebellar granule cells. , 1999, 56, 420-426.		22
125	Radical scavenging compound J 811 inhibits hydrogen peroxideâ€induced death of cerebellar granule cells. Journal of Neuroscience Research, 1999, 56, 420-426.	1.3	1
126	Termination of Lactation Induces Apoptosis and Alters the Expression of the Bcl-2 Family Members in the Rat Anterior Pituitary1. Endocrinology, 1998, 139, 2465-2471.	1.4	36

#	Article	IF	CITATIONS
127	Apoptosis in neuronal cells. NeuroReport, 1998, 9, R49-R55.	0.6	92
128	Prenatal Dexamethasone Causes Oligonephronia, Sodium Retention, and Higher Blood Pressure in the Offspring. Pediatric Research, 1998, 44, 317-322.	1.1	213
129	Apoptosis in rat hippocampal dentate gyrus after intraventricular colchicine. NeuroReport, 1997, 8, 3779-3783.	0.6	23
130	Expression and Plasticity of NO Synthase in the Neuroendocrine System. Brain Research Bulletin, 1997, 44, 533-538.	1.4	45
131	Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Experimental Brain Research, 1997, 117, 428-436.	0.7	89
132	Age-related changes in the expression of corticotropin-releasing hormone receptor mRNA in the rat pituitary. Molecular Brain Research, 1996, 37, 175-180.	2.5	13
133	CRH-R1 mRNA expression in two strains of inbred mice and its regulation after repeated restraint stress. Molecular Brain Research, 1996, 40, 310-314.	2.5	17
134	Estradiol Regulation of Nitric Oxide Synthase mRNAs in Rat Hypothalamus. Neuroendocrinology, 1996, 64, 357-363.	1.2	141
135	Expression of Fos-Related Antigens, Oxytocin, Dynorphin and Galanin in the Paraventricular and Supraoptic Nuclei of Lactating Rats. Neuroendocrinology, 1996, 63, 356-367.	1.2	52
136	Neurotrophins and their Receptors in the Adult Hypo- and Hyperthyroid Rat after Kainic Acid Injection: anIn SituHybridization Study. European Journal of Neuroscience, 1996, 8, 1873-1881.	1.2	28
137	Adrenocortical apoptosis in hypophysectomized rats is selectively reduced by ACTH. NeuroReport, 1995, 6, 342-344.	0.6	14
138	Expression of enkephalin and dynorphin precursor mRNAs in brain areas of hypo-and hyperthyroid rat: effect of kainic acid injection. Brain Research, 1995, 687, 83-93.	1.1	22
139	Colchicine Induces Apoptosis in Cerebellar Granule Cells. Experimental Cell Research, 1995, 218, 189-200.	1.2	139
140	Regulation of VIP mRNA expression by thyroid hormone in different brain areas of adult rat. Molecular Brain Research, 1994, 27, 87-94.	2.5	20
141	Immunohistochemical demonstration of nitric oxide synthase in the peripheral autonomic nervous system. Brain Research, 1994, 656, 381-395.	1.1	112
142	Nitric oxide synthase increases in hypothalamic magnocellular neurons after salt loading in the rat. An immunohistochemical and in situ hybridization study. Brain Research, 1994, 644, 273-281.	1.1	132
143	Upregulation of nitric oxide synthase and galanin message-associated peptide in hypothalamic magnocellular neurons after hypophysectomy. Immunohistochemical and in situ hybridization studies. Brain Research, 1994, 650, 219- <u>228</u> .	1.1	30
144	Plasticity of NO synthase expression in the nervous and endocrine systems. Neuropharmacology, 1994, 33, 1221-1227.	2.0	45

#	Article	IF	CITATIONS
145	The effect of lactation on nitric oxide synthase gene expression. Brain Research, 1993, 625, 177-179.	1.1	62
146	CGRP-like immunoreactivity in A11 dopamine neurons projecting to the spinal cord and a note on CGRP-CCK cross-reactivity. Brain Research, 1993, 600, 39-48.	1.1	52
147	Plasticity in expression of neuropeptides. European Neuropsychopharmacology, 1993, 3, 162-163.	0.3	Ο
148	Effect of different types of stressors on peptide messenger ribonucleic acids in the hypothalamic paraventricular nucleus. European Journal of Endocrinology, 1993, 128, 485-492.	1.9	51
149	Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of luteinizing hormone secretion. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11292-11296.	3.3	254
150	Fos and jun in rat central amygdaloid nucleus and paraventricular nucleus after stress. NeuroReport, 1992, 3, 849-852.	0.6	80
151	Response of Hypothalamic Peptide mRNAs to Thyroidectomy. Neuroendocrinology, 1992, 56, 694-703.	1.2	57
152	Distribution of thyrotropin-releasing hormone receptor messenger RNA in the rat brain: An in situ hybridization study. Neuroscience, 1992, 51, 891-909.	1.1	67
153	Evidence for involvement of nitric oxide in the regulation of hypothalamic portal blood flow. Neuroscience, 1992, 51, 769-772.	1.1	74
154	Galanin message-associated peptide (GMAP)- and galanin-like immunoreactivities: Overlapping and differential distributions in the rat. Neuroscience Letters, 1992, 142, 139-142.	1.0	44
155	Calcitonin Gene-Related Peptide in the Brain, Spinal Cord, and Some Peripheral Systems. Annals of the New York Academy of Sciences, 1992, 657, 119-134.	1.8	113
156	Presence of a dynorphin-like peptide in a restricted subpopulation of catecholaminergic neurons in rat nucleus tractus solitarii. Brain Research, 1992, 589, 225-230.	1.1	11
157	Vasoactive Intestinal Polypeptide/Peptide Histidine Isoleucine-Immunoreactive Neuron Systems in the Basal Hypothalamus of a Rat Strain with Deficient Prolactin Release in Response to Stress. Journal of Neuroendocrinology, 1992, 4, 51-58.	1.2	4
158	Neuropeptides and classical transmitters. Localization and interaction. Arzneimittelforschung, 1992, 42, 196-201.	0.5	6
159	The immediate-early genes c-fos and c-jun are differentially expressed in the rat adrenal gland after capsaicin treatment. Neuroscience Letters, 1991, 126, 163-166.	1.0	25
160	Effect of reserpine and colchicine on neuropeptide mRNA levels in the rat hypothalamic paraventricular nucleus. Molecular Brain Research, 1991, 9, 57-69.	2.5	117
161	Vasoactive intestinal polypeptide/peptide histidine isoleucine immunoreactive neuron systems in the basal hypothalamus of the rat with special reference to the portal vasculature: An immunohistochemical and in situ hybridization study. Neuroscience, 1991, 43, 483-502.	1.1	34
162	Expanded distribution of mRNA for nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 in the rat brain after colchicine treatment Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10352-10356.	3.3	118

#	Article	IF	CITATIONS
163	Transient induction of c-fos in rat magnocellular hypothalamic neurons after hypophysectomy. NeuroReport, 1991, 2, 703-706.	0.6	9
164	Differential effects of intracerebroventiricular colchicine administration on the expression of mrnas for neuropeptides and neurotransmitter enzymes, with specila emphasis on galanin: An in situ Hybridization Study. Synapse, 1990, 6, 369-391.	0.6	217
165	Localization of neuropeptide receptor mRNA in rat brain: Initial observations using probes for neurotensin and substance P receptors. Neuroscience Letters, 1990, 120, 134-138.	1.0	124
166	Localization of chemical messengers in magnocellular neurons of the hypothalamic supraoptic and paraventricular nuclei: An immunohistochemical study using experimental manipulations. Neuroscience, 1990, 37, 603-633.	1.1	181
167	Colocalization of messenger substances with special reference to the hypothalamic arcuate and paraventricular nuclei. Progress in Clinical and Biological Research, 1990, 342, 257-64.	0.2	6
168	In situ hybridization studies on mRNAs for cholecystokinin, calcitonin gene-related peptide and choline acetyltransferase in the lower brain stem, spinal cord and dorsal root ganglia of rat and guinea pig with special reference to motoneurons. Journal of Chemical Neuroanatomy, 1990, 3, 467-85.	1.0	58
169	The glucocorticoid receptor in the adrenal gland is localized in the cytoplasm of adrenaline cells. Acta Physiologica Scandinavica, 1989, 137, 559-560.	2.3	29
170	Coexistence of glucocorticoid receptor-like immunoreactivity with neuropeptides in the hypothalamic paraventricular nucleus. Experimental Brain Research, 1989, 78, 33-42.	0.7	63
171	Evidence for the occurrence of an enkephalin-like peptide in adrenaline and noradrenaline neurons of the rat medulla oblongata. Experimental Brain Research, 1989, 74, 631-40.	0.7	40
172	Neurotransmitters, neuropeptides and binding sites in the rat mediobasal hypothalamus: effects of monosodium glutamate (MSG) lesions. Experimental Brain Research, 1989, 76, 343-68.	0.7	166
173	On the role of PHI and VIP in neuroendocrine function. Regulatory Peptides, 1989, 26, 147.	1.9	1
174	Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 9569-9573.	3.3	458
175	Distribution and Coexistence of Corticotropin-Releasing Factor-, Neurotensin-, Enkephalin-, Cholecystokinin-, Galanin- and Vasoactive Intestinal Polypeptide/Peptide Histidine Isoleucine-Like Peptides in the Parvocellular Part of the Paraventricular Nucleus. Neuroendocrinology, 1989, 49, 309-323.	1.2	170
176	Hypothalamic neurosecretory systems and their messenger molecules. Acta Physiologica Scandinavica Supplementum, 1989, 583, 105-11.	1.0	1
177	A subpopulation of dopaminergic neurons in rat ventral mesencephalon contains both neurotensin and cholecystokinin. Brain Research, 1988, 455, 88-98.	1.1	133
178	Some blood vessels in the rat median eminence are surrounded by a dense plexus of vasoactive intestinal polypeptide/peptide histidine isoleucine (VIP/PHI) immunoreactive nerves. Neuroscience Letters, 1988, 84, 29-34.	1.0	14
179	Coexistence of TRH with other neuroactive substances in the rat central nervous system. Journal of Chemical Neuroanatomy, 1988, 1, 235-53.	1.0	29
180	Analysis of peptide histidine-isoleucine/ vasoactive intestinal polypeptideimmunoreactive neurons in the central nervous system with special reference to their relation to corticotropin releasing factor-and enkephalin-like immunoreactivities in the paraventricular hypothalamic nucleus. Neuroscience, 1987, 23, 827-857.	1.1	91

#	Article	IF	CITATIONS
181	Immunohistochemical analysis of the effects of cysteamine on somatostatin-like immunoreactivity in the rat central nervous system. Peptides, 1987, 8, 371-384.	1.2	16
182	Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat. Neuroscience, 1987, 20, 439-456.	1.1	166
183	Coexistence of peptides with classical neurotransmitters. Experientia, 1987, 43, 768-780.	1.2	335
184	Immunohistochemical evidence for a magnocellular somatostatin cell group in the anterior paraventricular thalamus of the rat. Cell and Tissue Research, 1986, 246, 683-685.	1.5	7