
Sylvain Guyot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6877505/publications.pdf Version: 2024-02-01

SVIVAIN CUVOT

#	Article	IF	CITATIONS
1	Polyphenol Profiles of French Cider Apple Varieties (Malus domesticasp.). Journal of Agricultural and Food Chemistry, 1999, 47, 4847-4853.	2.4	277
2	Inhibition of Apple Polyphenol Oxidase Activity by Procyanidins and Polyphenol Oxidation Products. Journal of Agricultural and Food Chemistry, 2004, 52, 122-130.	2.4	88
3	Haze in Apple-Based Beverages: Detailed Polyphenol, Polysaccharide, Protein, and Mineral Compositions. Journal of Agricultural and Food Chemistry, 2017, 65, 6404-6414.	2.4	34
4	Self-aggregation of oxidized procyanidins contributes to the formation of heat-reversible haze in apple-based liqueur wine. Food Chemistry, 2019, 276, 797-805.	4.2	19
5	Kinetics of the formation of \hat{l}^2 -casein/tannin mixed micelles. RSC Advances, 2012, 2, 3934.	1.7	13
6	Heat-unstable apple pathogenesis-related proteins alone or interacting with polyphenols contribute to haze formation in clear apple juice. Food Chemistry, 2020, 309, 125636.	4.2	7
7	Tannin-controlled micelles and fibrils of κ-casein. Journal of Chemical Physics, 2019, 151, 245103.	1.2	2
8	An insight into an intriguing oxidative biotransformation pathway of 5- <i>O</i> -caffeoylquinic acid by a gut bacterium. Food and Function, 2022, 13, 6195-6204.	2.1	2