Philippe Lefebvre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6877133/publications.pdf

Version: 2024-02-01

66234 31759 10,886 110 42 101 citations h-index g-index papers 112 112 112 18209 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enterocyte superoxide dismutase 2 deletion drives obesity. IScience, 2022, 25, 103707.	1.9	4
2	The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics, 2022, , .	1.0	0
3	Hepatic Molecular Signatures Highlight the Sexual Dimorphism of Nonalcoholic Steatohepatitis (NASH). Hepatology, 2021, 73, 920-936.	3.6	39
4	PPARs in liver physiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166097.	1.8	33
5	A targeted multi-omics approach reveals paraoxonase-1 as a determinant of obesity-associated fatty liver disease. Clinical Epigenetics, 2021, 13, 158.	1.8	9
6	Hepatic sexual dimorphism $\hat{a} \in \mathbb{Z}^n$ implications for non-alcoholic fatty liver disease. Nature Reviews Endocrinology, 2021, 17, 662-670.	4.3	41
7	An optimized protocol with a stepwise approach to identify specific nuclear receptor ligands from cultured mammalian cells. STAR Protocols, 2021, 2, 100658.	0.5	2
8	Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells, 2020, 9, 2185.	1.8	40
9	CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway. Journal of Biological Chemistry, 2020, 295, 17310-17322.	1.6	17
10	Perspectives on the use of super-enhancers as a defining feature of cell/tissue-identity genes. Epigenomics, 2020, 12, 715-723.	1.0	5
11	Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Molecular Systems Biology, 2020, 16, e9156.	3.2	22
12	Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Medical Genomics, 2019, 12, 80.	0.7	22
13	Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nature Metabolism, 2019, 1, 604-614.	5.1	102
14	Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARÎ \pm . Nature Communications, 2019, 10, 1684.	5.8	48
15	Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet, The, 2018, 391, 59-69.	6.3	244
16	Organizing combinatorial transcription factor recruitment at <i>cis</i> regulatory modules. Transcription, 2018, 9, 233-239.	1.7	10
17	Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11033-E11042.	3.3	35
18	Retinoids Issued from Hepatic Stellate Cell Lipid Droplet Loss as Potential Signaling Molecules Orchestrating a Multicellular Liver Injury Response. Cells, 2018, 7, 137.	1.8	30

#	Article	IF	Citations
19	Circulating PCSK9 levels are not associated with the severity of hepatic steatosis and NASH in a high-risk population. Atherosclerosis, 2018, 278, 82-90.	0.4	27
20	Daytime variations in perioperative myocardial injury – Authors' reply. Lancet, The, 2018, 391, 2106.	6.3	0
21	The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. Journal of Hepatology, 2018, 69, 1099-1109.	1.8	40
22	Modulation of large dense core vesicle insulin content mediates rhythmic hormone release from pancreatic beta cells over the 24h cycle. PLoS ONE, 2018, 13, e0193882.	1.1	3
23	Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα. Journal of Biological Methods, 2018, 5, e94.	1.0	10
24	Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals. ACS Chemical Biology, 2017, 12, 654-663.	1.6	13
25	Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152, 1679-1694.e3.	0.6	630
26	The logic of transcriptional regulator recruitment architecture at <i>cis</i> regulatory modules controlling liver functions. Genome Research, 2017, 27, 985-996.	2.4	22
27	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Scientific Reports, 2017, 7, 14087.	1.6	33
28	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	1.8	78
29	PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology, 2017, 13, 36-49.	4.3	509
30	Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARÎ \pm -regulated dermatopontin. JCI Insight, 2017, 2, .	2.3	96
31	Distinct but complementary contributions of PPAR isotypes to energy homeostasis. Journal of Clinical Investigation, 2017, 127, 1202-1214.	3.9	270
32	Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Molecular Metabolism, 2016, 5, 635-645.	3.0	136
33	The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis, 2016, 249, 200-208.	0.4	107
34	Molecular mechanism of PPAR \hat{l}_{\pm} action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology, 2015, 62, 720-733.	1.8	1,028
35	The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. Nucleus, 2015, 6, 15-18.	0.6	7
36	PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2015, 63, 164-173.	1.8	270

3

#	Article	IF	CITATIONS
37	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	5.8	274
38	MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. Journal of Clinical Investigation, 2015, 125, 2497-2509.	3.9	195
39	SREBF2 -Embedded mir33 Links the Nuclear Bile Acid Receptor FXR to Cholesterol and Lipoprotein Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 748-749.	1.1	5
40	Ketone Body Therapy Protects From Lipotoxicity and Acute Liver Failure Upon Pparα Deficiency. Molecular Endocrinology, 2015, 29, 1134-1143.	3.7	33
41	Nuclear bile acid signaling through the farnesoid X receptor. Cellular and Molecular Life Sciences, 2015, 72, 1631-1650.	2.4	92
42	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	3.6	55
43	A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Research, 2014, 42, 10943-10959.	6.5	71
44	Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. Journal of Clinical Investigation, 2014, 124, 1037-1051.	3.9	121
45	DCo(H2)ding the Metabolic Functions of SIRT1 in the Intestine. Gastroenterology, 2014, 146, 893-896.	0.6	1
46	Failing FXR expression in the liver links aging to hepatic steatosis. Journal of Hepatology, 2014, 60, 689-690.	1.8	15
47	Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2821-2833.	1.8	55
48	Peroxisome Proliferator-activated Receptor \hat{l}^3 Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes. Journal of Biological Chemistry, 2014, 289, 708-722.	1.6	39
49	Myocardial Contractile Dysfunction Is Associated With Impaired Mitochondrial Function and Dynamics in Type 2 Diabetic but Not in Obese Patients. Circulation, 2014, 130, 554-564.	1.6	237
50	The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology, 2014, 60, 1593-1606.	3.6	116
51	O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230.	1.5	28
52	The Hepatic Orosomucoid/ $\hat{l}\pm 1$ -Acid Glycoprotein Gene Cluster Is Regulated by the Nuclear Bile Acid Receptor FXR. Endocrinology, 2013, 154, 3690-3701.	1.4	24
53	Rev-erb- $\hat{l}\pm$ modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nature Medicine, 2013, 19, 1039-1046.	15.2	361
54	Mitochondrial Dysfunction as an Arrhythmogenic Substrate. Journal of the American College of Cardiology, 2013, 62, 1466-1473.	1.2	112

#	Article	IF	CITATIONS
55	Palmitate increases <i>Nur77</i> expression by modulating ZBP89 and Sp1 binding to the <i>Nur77</i> proximal promoter in pancreatic βâ€eells. FEBS Letters, 2013, 587, 3883-3890.	1.3	13
56	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	1.1	110
57	Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Hormone Molecular Biology and Clinical Investigation, 2013, 14, 75-86.	0.3	9
58	The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors. PLoS ONE, 2013, 8, e64880.	1.1	14
59	Nur77turing Macrophages in Atherosclerosis. Circulation Research, 2012, 110, 375-377.	2.0	6
60	Coordinated Regulation of PPAR Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Research, 2012, 2012, 1-9.	1.1	32
61	The Novel Antibacterial Compound Walrycin A Induces Human PXR Transcriptional Activity. Toxicological Sciences, 2012, 127, 225-235.	1.4	9
62	Peroxisome Proliferator–Activated Receptor-γ Activation Induces 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Human Alternative Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 677-685.	1.1	32
63	General Molecular Biology and Architecture of Nuclear Receptors. Current Topics in Medicinal Chemistry, 2012, 12, 486-504.	1.0	115
64	The Nuclear Orphan Receptor Nur77 Is a Lipotoxicity Sensor Regulating Glucose-Induced Insulin Secretion in Pancreatic \hat{l}^2 -Cells. Molecular Endocrinology, 2012, 26, 399-413.	3.7	38
65	Naturally improving insulin resistance with amorfrutins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7136-7137.	3.3	10
66	Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Research, 2012, 40, 8255-8265.	6.5	166
67	Control of nuclear receptor activities in metabolism by postâ€translational modifications. FEBS Letters, 2011, 585, 1640-1650.	1.3	53
68	Proteasomal degradation of retinoid X receptor \hat{l}_{\pm} reprograms transcriptional activity of PPAR \hat{l}_{3} in obese mice and humans. Journal of Clinical Investigation, 2010, 120, 1454-1468.	3.9	56
69	Retinoid X receptors: common heterodimerization partners with distinct functions. Trends in Endocrinology and Metabolism, 2010, 21, 676-683.	3.1	258
70	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	13.1	1,309
71	The glucocorticoid receptor is a coâ€regulator of the orphan nuclear receptor Nurr1. Journal of Neurochemistry, 2008, 104, 777-789.	2.1	27
72	Induction of CXCR2 Receptor by Peroxisome Proliferator-Activated Receptor Î ³ in Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 932-939.	1.1	23

#	Article	IF	CITATIONS
73	S 26948: a New Specific Peroxisome Proliferator Activated Receptor Modulator With Potent Antidiabetes and Antiatherogenic Effects. Diabetes, 2007, 56, 2797-2808.	0.3	50
74	The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Molecular and Cellular Endocrinology, 2007, 270, 23-32.	1.6	41
75	Sorting out the roles of PPARÂ in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 2006, 116, 571-580.	3.9	779
76	Retinoids interfere with the AP1 signalling pathway in human breast cancer cells. Cellular Signalling, 2006, 18, 889-898.	1.7	44
77	Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Research, 2006, 34, 5515-5527.	6.5	79
78	Down-Regulation of the Tumor Suppressor Gene Retinoic Acid Receptor \hat{l}^2 2 through the Phosphoinositide 3-Kinase/Akt Signaling Pathway. Molecular Endocrinology, 2006, 20, 2109-2121.	3.7	34
79	Distinct Roles of the Steroid Receptor Coactivator 1 and of MED1 in Retinoid-induced Transcription and Cellular Differentiation. Journal of Biological Chemistry, 2006, 281, 20338-20348.	1.6	21
80	Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. Journal of Experimental Medicine, 2005, 201, 1205-1215.	4.2	428
81	Transcriptional Activities of Retinoic Acid Receptors. Vitamins and Hormones, 2005, 70, 199-264.	0.7	107
82	The proliferating cell nuclear antigen regulates retinoic acid receptor transcriptional activity through direct protein-protein interaction. Nucleic Acids Research, 2005, 33, 4311-4321.	6.5	21
83	Regulation of Human ApoA-I by Gemfibrozil and Fenofibrate Through Selective Peroxisome Proliferator-Activated Receptor α Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 585-591.	1.1	116
84	Cell cycle regulation of breast cancer cells through estrogen-induced activities of ERK and Akt protein kinases. Molecular and Cellular Endocrinology, 2005, 237, 11-23.	1.6	21
85	Candida albicansPhospholipomannan Is Sensed through Tollâ€Like Receptors. Journal of Infectious Diseases, 2003, 188, 165-172.	1.9	281
86	Critical role of charged residues in helix 7 of the ligand binding domain in Hepatocyte Nuclear Factor 4Â dimerisation and transcriptional activity. Nucleic Acids Research, 2003, 31, 6640-6650.	6.5	14
87	PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nuclear Receptor, 2003, 1, 6.	10.0	36
88	Retinoic Acid Receptors Inhibit AP1 Activation by Regulating Extracellular Signal-Regulated Kinase and CBP Recruitment to an AP1-Responsive Promoter. Molecular and Cellular Biology, 2002, 22, 4522-4534.	1.1	103
89	Requirements for Heterodimerization between the Orphan Nuclear Receptor Nurr1 and Retinoid X Receptors. Journal of Biological Chemistry, 2002, 277, 35088-35096.	1.6	40
90	Chromosomal Integration of Retinoic Acid Response Elements Prevents Cooperative Transcriptional Activation by Retinoic Acid Receptor and Retinoid X Receptor. Molecular and Cellular Biology, 2002, 22, 1446-1459.	1.1	25

#	Article	IF	CITATIONS
91	Phosphorylation of histone H3 is functionally linked to retinoic acid receptor \hat{l}^2 promoter activation. EMBO Reports, 2002, 3, 335-340.	2.0	48
92	Selective alteration of gene expression in response to natural and synthetic retinoids. BMC Pharmacology, 2002, 2, 13.	0.4	12
93	Control of Retinoic Acid Receptor Heterodimerization by Ligand-induced Structural Transitions. Journal of Biological Chemistry, 2001, 276, 9452-9459.	1.6	32
94	Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds. Journal of Steroid Biochemistry and Molecular Biology, 2000, 72, 1-12.	1.2	49
95	Serine 157, a Retinoic Acid Receptor α Residue Phosphorylated by Protein Kinase C in Vitro, Is Involved in RXR·RARα Heterodimerization and Transcriptional Activity. Journal of Biological Chemistry, 1999, 274, 38225-38231.	1.6	72
96	Allosteric Regulation of the Discriminative Responsiveness of Retinoic Acid Receptor to Natural and Synthetic Ligands by Retinoid X Receptor and DNA. Molecular and Cellular Biology, 1999, 19, 3073-3085.	1.1	42
97	Distinct modes of interaction of the retinoic acid receptor alpha with natural and synthetic retinoids. Molecular and Cellular Endocrinology, 1998, 139, 161-169.	1.6	11
98	H11-H12 Loop Retinoic Acid Receptor Mutants Exhibit Distinct trans-Activating and trans-Repressing Activities in the Presence of Natural or Synthetic Retinoids. Biochemistry, 1998, 37, 9240-9249.	1.2	24
99	Analysis of Retinoid Receptor Phosphorylation. , 1998, 89, 277-291.		1
100	Binding of Retinoic Acid Receptor Heterodimers to DNA. Journal of Biological Chemistry, 1998, 273, 12288-12295.	1.6	25
101	Disruption of the Glucocorticoid Receptor Assembly with Heat Shock Protein 90 by a Peptidic Antiglucocorticoid. Molecular Endocrinology, 1997, 11, 962-972.	3.7	11
102	Identification of Amino Acids Critical for the DNA Binding and Dimerization Properties of the Human Retinoic Acid Receptor \hat{l}_{\pm} . Journal of Biological Chemistry, 1996, 271, 17996-18006.	1.6	19
103	Protein Phosphatases 1 and 2A Regulate the Transcriptional and DNA Binding Activities of Retinoic Acid Receptors. Journal of Biological Chemistry, 1995, 270, 10806-10816.	1.6	42
104	Structural Determinants of the Ligand-Binding Site of the Human Retinoic Acid Receptor .alpha Biochemistry, 1995, 34, 5477-5485.	1.2	33
105	Study of the heteromeric structure of the untransformed glucocorticoid receptor using chemical cross-linking and monoclonal antibodies against the 90K heat-shock protein. Biochemical and Biophysical Research Communications, 1989, 159, 677-686.	1.0	19
106	Improvement in glucocorticoid receptor binding affinity concomitant to shift from antagonist to agonist activity in a series of $17\hat{1}^2$ -carboxamide derivatives of dexamethasone. The Journal of Steroid Biochemistry, 1989, 33, 557-563.	1.3	5
107	Genes coding for RNA polymerase beta subunit in bacteria. Structure/function analysis. FEBS Journal, 1988, 177, 363-369.	0.2	24
108	RNA binding to the untransformed glucocorticoid receptor Sensitivity to substrate-specific ribonucleases and characterization of a ribonucleic acid associated with the purified receptor. FEBS Journal, 1988, 177, 371-382.	0.2	14

#	Article	IF	CITATIONS
109	Association of the glucocorticoid receptor binding subunit with the 90K nonsteroid-binding component is stabilized by both steroidal and nonsteroidal antiglucocorticoids in intact cells. Biochemistry, 1988, 27, 9186-9194.	1.2	41
110	RU 486 stabilizes a high molecular weight form of the glucocorticoid receptor containing the 90K non-steroid binding protein in intact thymus cells. Biochemical and Biophysical Research Communications, 1988, 150, 1221-1229.	1.0	18