
Shu Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Optical to Mid-infrared Extinction Law Based on the APOGEE, Gaia DR2, Pan-STARRS1, SDSS, APASS, 2MASS, and WISE Surveys. Astrophysical Journal, 2019, 877, 116.	4.5	254
2	The Zwicky Transient Facility Catalog of Periodic Variable Stars. Astrophysical Journal, Supplement Series, 2020, 249, 18.	7.7	124
3	A PRECISE DETERMINATION OF THE MID-INFRARED INTERSTELLAR EXTINCTION LAW BASED ON THE APOGEE SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2016, 224, 23.	7.7	72
4	<i>Wide-field Infrared Survey Explorer</i> (<i>WISE</i>) Catalog of Periodic Variable Stars. Astrophysical Journal, Supplement Series, 2018, 237, 28.	7.7	70
5	VERY LARGE INTERSTELLAR GRAINS AS EVIDENCED BY THE MID-INFRARED EXTINCTION. Astrophysical Journal, 2015, 811, 38.	4.5	52
6	THE MID-INFRARED EXTINCTION LAW AND ITS VARIATION IN THE COALSACK NEBULA. Astrophysical Journal, 2013, 773, 30.	4.5	40
7	The interstellar oxygen crisis, or where have all the oxygen atoms gone?. Monthly Notices of the Royal Astronomical Society, 2015, 454, 569-575.	4.4	35
8	Modeling the infrared interstellar extinction. Planetary and Space Science, 2014, 100, 32-39.	1.7	31
9	The Near-infrared Optimal Distances Method Applied to Galactic Classical Cepheids Tightly Constrains Mid-infrared Period–Luminosity Relations. Astrophysical Journal, 2018, 852, 78.	4.5	30
10	Optical–Mid-infrared Period–Luminosity Relations for W UMa-type Contact Binaries Based on Gaia DR 1: 8% Distance Accuracy. Astrophysical Journal, 2018, 859, 140.	4.5	27
11	An Extremely Low Mid-infrared Extinction Law toward the Galactic Center and 4% Distance Precision to 55 Classical Cepheids. Astrophysical Journal, 2018, 859, 137.	4.5	24
12	The Optical–Mid-infrared Extinction Law of the lÂ=Â165° Sightline in the Galactic Plane: Diversity of the Extinction Law in the Diffuse Interstellar Medium. Astrophysical Journal, 2017, 848, 106.	4.5	19
13	Distances to the supernova remnants in the inner disk. Astronomy and Astrophysics, 2020, 639, A72.	5.1	16
14	Physical Properties of 29 sdB+dM Eclipsing Binaries in Zwicky Transient Facility. Research in Astronomy and Astrophysics, 2022, 22, 035022.	1.7	6
15	3D Parameter Maps of Red Clump Stars in the Milky Way: Absolute Magnitudes and Intrinsic Colors. Astrophysical Journal, 2021, 923, 145.	4.5	3
16	Dependence of Pulsation Mode of Cepheids on Metallicity. Astrophysical Journal, 2022, 928, 139.	4.5	0