Dong-Jiang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876584/publications.pdf

Version: 2024-02-01

141	12,231	62 h-index	106
papers	citations		g-index
143	143	143	13296
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. CheM, 2018, 4, 285-297.	5.8	624
2	An Efficient Photocatalyst Structure: TiO ₂ (B) Nanofibers with a Shell of Anatase Nanocrystals. Journal of the American Chemical Society, 2009, 131, 17885-17893.	6.6	482
3	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	6.6	464
4	Electronic Structure Tuning in Ni ₃ FeN/r-GO Aerogel toward Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano, 2018, 12, 245-253.	7.3	462
5	Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping. Nature Catalysis, 2019, 2, 688-695.	16.1	423
6	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie - International Edition, 2021, 60, 18821-18829.	7.2	346
7	A Defect-Driven Metal-free Electrocatalyst for Oxygen Reduction in Acidic Electrolyte. CheM, 2018, 4, 2345-2356.	5.8	292
8	Heterojunctions in g-C ₃ N ₄ /TiO ₂ (B) nanofibres with exposed (001) plane and enhanced visible-light photoactivity. Journal of Materials Chemistry A, 2014, 2, 2071-2078.	5. 2	241
9	Highly Efficient Gas Sensor Using a Hollow SnO ₂ Microfiber for Triethylamine Detection. ACS Sensors, 2017, 2, 897-902.	4.0	238
10	Metal-Free Thiophene-Sulfur Covalent Organic Frameworks: Precise and Controllable Synthesis of Catalytic Active Sites for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 8104-8108.	6.6	226
11	Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite. Journal of Materials Chemistry, 2012, 22, 17254.	6.7	212
12	Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage. ACS Central Science, 2015, 1, 261-269.	5. 3	195
13	Effect of Intrinsic Defects of Carbon Materials on the Sodium Storage Performance. Advanced Energy Materials, 2020, 10, 1903652.	10.2	194
14	Recent Progress in Oxygen Electrocatalysts for Zinc–Air Batteries. Small Methods, 2017, 1, 1700209.	4.6	183
15	Highly stable supercapacitors with MOF-derived Co ₉ S ₈ /carbon electrodes for high rate electrochemical energy storage. Journal of Materials Chemistry A, 2017, 5, 12453-12461.	5.2	180
16	Seaweed-Derived Route to Fe ₂ O ₃ Hollow Nanoparticles/N-Doped Graphene Aerogels with High Lithium Ion Storage Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7047-7053.	4.0	179
17	Multishelled Niâ€Rich Li(Ni <i></i> Co <i>_y</i> Mn <i>_z</i>)O ₂ Hollow Fibers with Low Cation Mixing as Highâ€Performance Cathode Materials for Liâ€Ion Batteries. Advanced Science, 2017, 4, 1600262.	5.6	172
18	Proliferaâ€Greenâ€Tide as Sustainable Source for Carbonaceous Aerogels with Hierarchical Pore to Achieve Multiple Energy Storage. Advanced Functional Materials, 2016, 26, 8487-8495.	7.8	169

#	Article	IF	CITATIONS
19	Defectâ€Induced Ptâ€"Coâ€"Se Coordinated Sites with Highly Asymmetrical Electronic Distribution for Boosting Oxygenâ€Involving Electrocatalysis. Advanced Materials, 2019, 31, e1805581.	11.1	168
20	Seaweed biomass derived (Ni,Co)/CNT nanoaerogels: efficient bifunctional electrocatalysts for oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2016, 4, 6376-6384.	5.2	164
21	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€5pectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie - International Edition, 2020, 59, 868-873.	7.2	164
22	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2016, 55, 15925-15928.	7.2	157
23	NiFe-based nanostructures on nickel foam as highly efficiently electrocatalysts for oxygen and hydrogen evolution reactions. Journal of Energy Chemistry, 2019, 39, 39-53.	7.1	157
24	Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental, 2019, 255, 117764.	10.8	151
25	Scalable and Costâ€Effective Synthesis of Highly Efficient Fe ₂ Nâ€Based Oxygen Reduction Catalyst Derived from Seaweed Biomass. Small, 2016, 12, 1295-1301.	5.2	148
26	Synergy between cobalt and nickel on NiCo2O4 nanosheets promotes peroxymonosulfate activation for efficient norfloxacin degradation. Applied Catalysis B: Environmental, 2022, 306, 121091.	10.8	148
27	Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Longâ€Life Rechargeable Lithium–CO ₂ Batteries. Advanced Materials, 2018, 30, e1803124.	11.1	144
28	Lignocellulose Aerogel from Wood-Ionic Liquid Solution (1-Allyl-3-methylimidazolium Chloride) under Freezing and Thawing Conditions. Biomacromolecules, 2011, 12, 1860-1867.	2.6	137
29	Interface engineering of 3D BiVO ₄ /Fe-based layered double hydroxide core/shell nanostructures for boosting photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2017, 5, 9952-9959.	5.2	134
30	Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 280, 119437.	10.8	128
31	Tuning the Shell Number of Multishelled Metal Oxide Hollow Fibers for Optimized Lithium-lon Storage. ACS Nano, 2017, 11, 6186-6193.	7. 3	127
32	Selective Capture of Toxic Selenite Anions by Bismuthâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 13197-13201.	7.2	122
33	3D Sulfur and Nitrogen Codoped Carbon Nanofiber Aerogels with Optimized Electronic Structure and Enlarged Interlayer Spacing Boost Potassiumâ€ion Storage. Small, 2019, 15, e1900816.	5.2	122
34	Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 8247-8254.	5.2	114
35	Highly Porous FeS/Carbon Fibers Derived from Fe-Carrageenan Biomass: High-capacity and Durable Anodes for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17175-17182.	4.0	114
36	Direct Interfacial Growth of MnO ₂ Nanostructure on Hierarchically Porous Carbon for High-Performance Asymmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2018, 6, 633-641.	3.2	113

#	Article	IF	Citations
37	Suppressing Fe–Li Antisite Defects in LiFePO ₄ /Carbon Hybrid Microtube to Enhance the Lithium Ion Storage. Advanced Energy Materials, 2016, 6, 1601549.	10.2	109
38	Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Applied Catalysis B: Environmental, 2021, 286, 119882.	10.8	109
39	Boosting hydrogen evolution <i>via</i> optimized hydrogen adsorption at the interface of CoP ₃ and Ni ₂ P. Journal of Materials Chemistry A, 2018, 6, 5560-5565.	5.2	107
40	Simple pyrolysis of cobalt alginate fibres into Co ₃ O ₄ /C nano/microstructures for a high-performance lithium ion battery anode. Journal of Materials Chemistry A, 2014, 2, 18761-18766.	5.2	106
41	Titanate-based adsorbents for radioactive ions entrapment from water. Nanoscale, 2013, 5, 2232.	2.8	102
42	Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water. Chemical Engineering Journal, 2021, 407, 127221.	6.6	101
43	Subâ€1.5 nm Ultrathin CoP Nanosheet Aerogel: Efficient Electrocatalyst for Hydrogen Evolution Reaction at All pH Values. Small, 2018, 14, e1802824.	5.2	99
44	Exfoliation of amorphous phthalocyanine conjugated polymers into ultrathin nanosheets for highly efficient oxygen reduction. Journal of Materials Chemistry A, 2019, 7, 3112-3119.	5.2	87
45	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 9404-9408.	7.2	87
46	Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production. Nanoscale, 2020, 12, 13297-13310.	2.8	86
47	Vertically aligned nanorod-like rutileTiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties. Journal of Materials Chemistry, 2012, 22, 2465-2472.	6.7	84
48	Single crystal \hat{l} ±-Fe2O3 with exposed {104} facets for high performance gas sensor applications. RSC Advances, 2012, 2, 6178.	1.7	82
49	Hierarchical red phosphorus incorporated TiO2 hollow sphere heterojunctions toward superior photocatalytic hydrogen production. Journal of Materials Science and Technology, 2022, 108, 18-25.	5.6	82
50	Nitrogen and Sulfur Vacancies in Carbon Shell to Tune Charge Distribution of Co ₆ Ni ₃ S ₈ Core and Boost Sodium Storage. Advanced Energy Materials, 2020, 10, 1904147.	10.2	80
51	Gradientâ€Concentration Design of Stable Core–Shell Nanostructure for Acidic Oxygen Reduction Electrocatalysis. Advanced Materials, 2020, 32, e2003493.	11.1	79
52	Ultrafine FeSe nanoparticles embedded into 3D carbon nanofiber aerogels with FeSe/Carbon interface for efficient and long-life sodium storage. Carbon, 2019, 143, 106-115.	5.4	78
53	Architecture-controlled synthesis of M $<$ sub $>$ x $<$ /sub $>$ O $<$ sub $>$ y $<$ /sub $>$ (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	5.2	75
54	Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells. Journal of Materials Chemistry A, 2015, 3, 14188-14194.	5.2	72

#	Article	IF	CITATIONS
55	From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage. Energy Storage Materials, 2019, 17, 22-30.	9.5	72
56	Boosting electrocatalytic hydrogen generation by a renewable porous wood membrane decorated with Fe-doped NiP alloys. Journal of Energy Chemistry, 2021, 56, 23-33.	7.1	72
57	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Meathme="si0003.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{<mml:mi>01</mml:mi><mml:mover accent="true"><mml:mi mathvariant="bold">1<mml:mo>A^</mml:mo><td>8.2</td><td>68</td></mml:mi </mml:mover></mml:mo </mml:mrow>	8.2	68
58	Controllable synthesis of CoN ₃ catalysts derived from Co/Zn-ZIF-67 for electrocatalytic oxygen reduction in acidic electrolytes. Journal of Materials Chemistry A, 2019, 7, 21884-21891.	5.2	67
59	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 11369-11373.	7.2	67
60	Research progress of nanocellulose for electrochemical energy storage: A review. Journal of Energy Chemistry, 2020, 51, 342-361.	7.1	67
61	Enhanced photodynamic therapy of mixed phase TiO2(B)/anatase nanofibers for killing of HeLa cells. Nano Research, 2014, 7, 1659-1669.	5.8	65
62	Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions. Nanoscale, 2013, 5, 11011.	2.8	64
63	Rational design of N-doped carbon nanobox-supported Fe/Fe ₂ N/Fe ₃ C nanoparticles as efficient oxygen reduction catalysts for Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 11340-11347.	5.2	63
64	Boosting Sodium-Ion Storage by Encapsulating NiS (CoS) Hollow Nanoparticles into Carbonaceous Fibers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40531-40539.	4.0	62
65	Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43805-43812.	4.0	59
66	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. Angewandte Chemie - International Edition, 2021, 60, 26483-26488.	7.2	59
67	Scalable and controllable synthesis of atomic metal electrocatalysts assisted by an egg-box in alginate. Journal of Materials Chemistry A, 2018, 6, 18417-18425.	5.2	58
68	Exploring the Dominant Role of Atomic―and Nanoâ€Ruthenium as Active Sites for Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Advanced Science, 2021, 8, e2004516.	5.6	58
69	Air cathode of zinc–air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction. Nanoscale, 2019, 11, 826-832.	2.8	53
70	Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9856-9864.	4.0	53
71	Enhancing Photoactivity of TiO ₂ (B)/Anatase Core–Shell Nanofibers by Selectively Doping Cerium Ions into the TiO ₂ (B) Core. Chemistry - A European Journal, 2013, 19, 5113-5119.	1.7	51
72	Photogenerated-carrier separation along edge dislocation of WO ₃ single-crystal nanoflower photoanode. Journal of Materials Chemistry A, 2018, 6, 8604-8611.	5.2	51

#	Article	IF	CITATIONS
73	Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chemical Engineering Journal, 2018, 345, 604-610.	6.6	50
74	Cellulose nanocrystals (CNC) derived Mo2C@sulfur-doped carbon aerogels for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 13720-13726.	3.8	50
75	Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage. Carbon, 2018, 137, 31-40.	5.4	48
76	Internanofiber Spacing Adjustment in the Bundled Nanofibers for Sensitive Fluorescence Detection of Volatile Organic Compounds. Analytical Chemistry, 2017, 89, 3814-3818.	3.2	47
77	Enhanced oxygen reduction reaction for Zn-air battery at defective carbon fibers derived from seaweed polysaccharide. Applied Catalysis B: Environmental, 2022, 301, 120785.	10.8	45
78	Controllable N-Doped Carbonaceous Composites with Highly Dispersed Ni Nanoparticles for Excellent Microwave Absorption. ACS Applied Nano Materials, 2018, 1, 5895-5906.	2.4	42
79	A transparent CdS@TiO ₂ nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9, 15650-15657.	2.8	40
80	A [001]â€Oriented Hittorf's Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wideâ€Spectrumâ€Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angewandte Chemie, 2020, 132, 878-883.	1.6	40
81	CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries. Green Energy and Environment, 2017, 2, 160-167.	4.7	39
82	Triggering superior sodium ion adsorption on (2†0†0) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chemical Engineering Journal, 2018, 345, 165-173.	6.6	39
83	Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode. Electrochimica Acta, 2019, 299, 72-79.	2.6	39
84	Surface modification of hematite photoanode by NiFe layered double hydroxide for boosting photoelectrocatalytic water oxidation. Journal of Alloys and Compounds, 2018, 764, 341-346.	2.8	38
85	Seaweed Biomass-Derived Flame-Retardant Gel Electrolyte Membrane for Safe Solid-State Supercapacitors. Macromolecules, 2018, 51, 9360-9367.	2.2	37
86	Alginate/r-GO assisted synthesis of ultrathin LiFePO4 nanosheets with oriented (0†1†0) facet and ultralow antisite defect. Chemical Engineering Journal, 2018, 351, 340-347.	6.6	37
87	Phosphorus-doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production. APL Materials, 2020, 8, .	2.2	37
88	Visible-light driven rapid bacterial inactivation on red phosphorus/titanium oxide nanofiber heterostructures. Journal of Hazardous Materials, 2021, 413, 125462.	6.5	37
89	A review on nanoconfinement engineering of red phosphorus for enhanced Li/Na/K-ion storage performances. Journal of Energy Chemistry, 2021, 61, 531-552.	7.1	36
90	Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays. Journal of Materials Science, 2012, 47, 4457-4462.	1.7	35

#	Article	IF	Citations
91	Biomass as a Template Leads to CdS@Carbon Aerogels for Efficient Photocatalytic Hydrogen Evolution and Stable Photoelectrochemical Cells. ACS Sustainable Chemistry and Engineering, 2018, 6, 14911-14918.	3.2	35
92	A high-temperature phosphorization for synthesis of core-shell Ni-NixPy@C nanocomposite-immobilized sponge-like P-doped porous carbon with excellent supercapacitance performance. Electrochimica Acta, 2019, 309, 197-208.	2.6	35
93	Poorly-crystallized poly(vinyl alcohol)/carrageenan matrix: Highly ionic conductive and flame-retardant gel polymer electrolytes for safe and flexible solid-state supercapacitors. Journal of Power Sources, 2020, 475, 228688.	4.0	34
94	Co3O4nanoparticle embedded carbonaceous fibres: a nanoconfinement effect on enhanced lithium-ion storage. Chemical Communications, 2015, 51, 16267-16270.	2.2	32
95	Porous CoP nanostructure electrocatalyst derived from DUT-58 for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 13904-13910.	3.8	32
96	Beyond Platinum: Defects Abundant CoP ₃ /Ni ₂ P Heterostructure for Hydrogen Evolution Electrocatalysis. Small Science, 2021, 1, 2000027.	5.8	32
97	Dopamine-derived cavities/Fe ₃ O ₄ nanoparticles-encapsulated carbonaceous composites with self-generated three-dimensional network structure as an excellent microwave absorber. RSC Advances, 2019, 9, 766-780.	1.7	31
98	Ternary red phosphorus/CoP2/SiO2 microsphere boosts visible-light-driven photocatalytic hydrogen evolution from pure water splitting. Journal of Materials Science and Technology, 2022, 125, 59-66.	5.6	31
99	High nitrogen doped carbon nanofiber aerogels for sodium ion batteries: synergy of vacancy defects to boost sodium ion storage. Applied Surface Science, 2019, 496, 143717.	3.1	30
100	Sodiumâ€Decorated Amorphous/Crystalline RuO ₂ with Rich Oxygen Vacancies: A Robust pHâ€Universal Oxygen Evolution Electrocatalyst. Angewandte Chemie, 2021, 133, 18969-18977.	1.6	30
101	Nb2O5-Î ³ -Al2O3 nanofibers as heterogeneous catalysts for efficient conversion of glucose to 5-hydroxymethylfurfural. Scientific Reports, 2016, 6, 34068.	1.6	29
102	How heteroatoms (Ge, N, P) improve the electrocatalytic performance of graphene: theory and experiment. Science Bulletin, 2018, 63, 155-158.	4.3	28
103	Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction. Rare Metals, 2020, 39, 841-849.	3.6	28
104	Integrating efficient filtration and visible-light photocatalysis by loading Ag-doped zeolite Y particles on filtration membrane of alumina nanofibers. Journal of Membrane Science, 2011, 375, 69-74.	4.1	27
105	Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Applied Catalysis B: Environmental, 2022, 304, 120908.	10.8	27
106	Capture of radioactive cations from water using niobate nanomaterials with layered and tunnel structures. RSC Advances, 2015, 5, 75354-75359.	1.7	26
107	Doubleâ€Helix Structure in Carrageenan–Metal Hydrogels: A General Approach to Porous Metal Sulfides/Carbon Aerogels with Excellent Sodiumâ€Ion Storage. Angewandte Chemie, 2016, 128, 16157-16160.	1.6	26
108	Sustainable Route for Molecularly Thin Cellulose Nanoribbons and Derived Nitrogen-Doped Carbon Electrocatalysts. ACS Sustainable Chemistry and Engineering, 2017, 5, 8729-8737.	3.2	26

#	Article	IF	CITATIONS
109	Enhanced degradation of norfloxacin by Ce-mediated Fe-MIL-101: catalytic mechanism, degradation pathways, and potential applications in wastewater treatment. Environmental Science: Nano, 2021, 8, 2347-2359.	2.2	26
110	Red Phosphorus Decorated TiO ₂ Nanorod Mediated Photodynamic and Photothermal Therapy for Renal Cell Carcinoma. Small, 2021, 17, e2101837.	5.2	26
111	Hierarchically Porous and Defective Carbon Fiber Cathode for Efficient Zn-Air Batteries and Microbial Fuel Cells. Advanced Fiber Materials, 2022, 4, 795-806.	7.9	26
112	Potassium Niobate Nanolamina: A Promising Adsorbent for Entrapment of Radioactive Cations from Water. Scientific Reports, 2014, 4, 7313.	1.6	24
113	Multiple Vacancies on (111) Facets of Singleâ€Crystal NiFe ₂ O ₄ Spinel Boost Electrocatalytic Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2020, 15, 3995-3999.	1.7	23
114	Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants. Journal of Environmental Chemical Engineering, 2021, 9, 104742.	3.3	23
115	Single-site catalysis in heterogeneous electro-Fenton reaction for wastewater remediation. Chem Catalysis, 2022, 2, 679-692.	2.9	22
116	Generating lithium vacancies through delithiation of Li(NixCoyMnz)O2 towards bifunctional electrocatalysts for rechargeable zinc-air batteries. Energy Storage Materials, 2018, 15, 202-208.	9.5	21
117	Mechanistic insight into high-efficiency sodium storage based on N/O/P-functionalized ultrathin carbon nanosheet. Journal of Power Sources, 2019, 442, 227184.	4.0	18
118	Fe-alginate biomass-derived FeS/3D interconnected carbon nanofiber aerogels as anodes for high performance sodium-ion batteries. Journal of Alloys and Compounds, 2019, 795, 54-59.	2.8	18
119	Environmental life cycle assessment of supercapacitor electrode production using algae derived biochar aerogel. Biochar, 2021, 3, 701-714.	6.2	17
120	Selenite capture by MIL-101 (Fe) through Fe O Se bonds at free coordination Fe sites. Journal of Hazardous Materials, 2022, 424, 127715.	6.5	17
121	Nanocoiled Assembly of Asymmetric Perylene Diimides: Formulation of Structural Factors. Journal of Physical Chemistry C, 2015, 119, 6446-6452.	1.5	16
122	Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces. Wood Science and Technology, 2014, 48, 51-58.	1.4	15
123	Heterocyclization Strategy for Construction of Linear Conjugated Polymers: Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction. Angewandte Chemie, 2019, 131, 11491-11495.	1.6	14
124	DUTâ€58 (Co) Derived Synthesis of Co Clusters as Efficient Oxygen Reduction Electrocatalyst for Zinc–Air Battery. Global Challenges, 2018, 2, 1700086.	1.8	13
125	Cation vacancy driven efficient CoFe-LDH-based electrocatalysts for water splitting and Zn–air batteries. Materials Advances, 2021, 2, 7932-7938.	2.6	13
126	ZIF-derived zinc decorated cobalt nanoparticles for efficient oxygen reduction and Zn-air batteries. Journal of Alloys and Compounds, 2022, 908, 164638.	2.8	13

#	Article	IF	CITATIONS
127	Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 9504-9508.	1.6	10
128	Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction. Journal of Alloys and Compounds, 2020, 817, 152727.	2.8	9
129	Red Phosphorus Nanodot-Decorated Polymeric Carbon Nitride Nanotubes for Visible-Light-Driven Photocatalytic Bacterial Inactivation. ACS Applied Nano Materials, 2022, 5, 862-870.	2.4	9
130	Electrostatic Interaction in Amino Protonated Chitosan–Metal Complex Anion Hydrogels: A Simple Approach to Porous Metal Carbides/N-Doped Carbon Aerogels for Energy Conversion. ACS Applied Materials & Diterfaces, 2022, 14, 22151-22160.	4.0	9
131	Selective Capture of Toxic Selenite Anions by Bismuthâ€based Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 13381-13385.	1.6	8
132	Controlled Asymmetric Charge Distribution of Active Centers in Conjugated Polymers for Oxygen Reduction. Angewandte Chemie, 0 , , .	1.6	7
133	Efficient visible-light driven photocatalysts: coupling TiO2(AB) nanotubes with g-C3N4 nanoflakes. Journal of Materials Science: Materials in Electronics, 2017, 28, 1271-1280.	1.1	5
134	Crystal Phase-Related Toxicity of One-Dimensional Titanium Dioxide Nanomaterials on Kidney Cells. ACS Applied Bio Materials, 2021, 4, 3499-3506.	2.3	5
135	Biochar aerogel decorated with thiophene S manipulated 5-membered rings boosts nitrogen fixation. Applied Catalysis B: Environmental, 2022, 313, 121425.	10.8	5
136	20,000 Ligands Under the Sea: Metal-Organic Supramolecules from the Ocean. Matter, 2020, 2, 10-12.	5.0	4
137	Controllable construction of pH-responsive hydrogel based on marine polysaccharides as oral delivery vehicle of tramadol. Materials Today Sustainability, 2021, 14, 100080.	1.9	4
138	Interfacial enhancement of Oâ^— protonation on Fe2N/Fe3C nanoparticles to boost oxygen reduction reaction and the fuel cell in acidic electrolyte. Materials Today Energy, 2021, 21, 100834.	2.5	3
139	Pt-decorated porously defective carbon aerogels derived from polysaccharide for oxygen reduction in acidic and alkaline electrolytes. Journal of Porous Materials, 2022, 29, 1061-1070.	1.3	1
140	Effect of local coordination on catalytic activities and selectivities of Fe-based catalysts for N ₂ reduction. Physical Chemistry Chemical Physics, 2022, 24, 14517-14524.	1.3	1
141	Innenrýcktitelbild: Charge Polarization from Atomic Metals on Adjacent Graphitic Layers for Enhancing the Hydrogen Evolution Reaction (Angew. Chem. 28/2019). Angewandte Chemie, 2019, 131, 9749-9749.	1.6	O